Online Appendix

"When the Partisan Becomes Personal: Mayoral Incumbency Effects in Buenos Aires, 1983-2019" (for online publication only)

- (1) Section A presents the descriptive statistics and some additional plots.
- (2) Section B presents the balance checks and placebo tests.
- (3) Section C reports additional results and robustness checks.

A Descriptive statistics

Copartisanship and approval. Table A1 presents the partisan identity of the president and governor for each election between 1985 and 2019, as well as the president's net approval % – defined as the difference between the president's positive approval % minus its negative (dis)approval (Carlin et al. 2019) – in the quarter before the election.

Mayoral re-election, 2011 and 2015 cohorts. Table A2 presents the re-running reelection rates for PJ and UCR mayors elected in 2011 and 2015.

Descriptive statistics. Table A3 presents the descriptive statistics for the main variables of interest during 1983-2017. We distinguish between four samples: (i) PJ-concurrent elections; (ii) UCR-concurrent elections; (iii) PJ-midterm elections; and (iv) UCR-midterm elections. We restrict the samples to municipal elections in which the PJ (respectively, the UCR) finished first or second.

Correlation between outcomes. Figure A1 presents the correlation between outcomes for each of the four samples listed in Table A3. Figure A2 visualizes in more detail the relationship between vote shares in municipal and federal elections.

Temporal and geographical distribution. Figure A3 presents the evolution of the eight outcomes of interest for both the PJ and UCR, between 1983 and 2019. The maps in Figure A4 display the average vote share in federal elections (1983-2019) for the PJ and the UCR in both the *Conurbano* and the rest of the province. Figure A5 display both the average values and the full distribution of the running variable in each of Buenos Aires's eight electoral *secciones*.

Additional RD plots. Figures A6 and A7 present the full sample RD plots (i) for the demeaned version of the outcome variables (i.e., net of municipality and year fixed effects); and (ii) for the placebo sample in which treatment is defined as winning a midterm election.

Table A1: Copartisanship and presidential approval, 1985-2019

outcon	ne measured in	preside	ent's party	goveri	nor's party	net approval %
1985	midterm		UCR		UCR	30.2
1987	concurrent		UCR		UCR	23.7
1989	midterm		UCR	PJ		-6.3
1991	concurrent	PJ		PJ		3.9
1993	midterm	PJ		PJ		-2.3
1995	concurrent	PJ		PJ		1.9
1997	midterm	PJ		PJ		-6.5
1999	concurrent	PJ		PJ		-15.0
2001	midterm		UCR	PJ		-14.2
2003	concurrent	PJ		PJ		26.5
2005	midterm	PJ		PJ		32.9
2007	concurrent	PJ		PJ		22.0
2009	midterm	PJ		PJ		-10.8
2011	concurrent	PJ		PJ		28.7
2013	midterm	PJ		PJ		11.0
2015	concurrent	PJ		PJ		17.3
2017	midterm		UCR		UCR	1.2
2019	concurrent		UCR		UCR	

Partisan affiliation of Argentina's president and the governor of Buenos Aires at the time of each municipal election between 1985 and 2019. Net approval – defined as positive approval % minus negative (dis)approval % – is taken from Carlin et al. (2019). Values in **black** indicate "High" approval – a value above 4.40%, the median value for the 1983.Q4-2018.Q2 period –, while values in **red** indicate presidents with "Low" approval.

Table A2: Re-running and re-election rates PBA mayors, 2011 & 2015 cohorts

		Re-	Re-runs		Wins		Loses
Cohort	Sample size*	N	%	N	%	N	%
2011-2015	115	78	67.8	46	59.0	32	41.0
2015-2019	120	97	80.8	83	85.6	14	14.4
Total	235	175	74.5	129	73.7	46	26.3

^{*} Data on 20 and 15 municipalities is missing, respectively, because the municipality was controlled by a porty other than the PJ or the UCR.

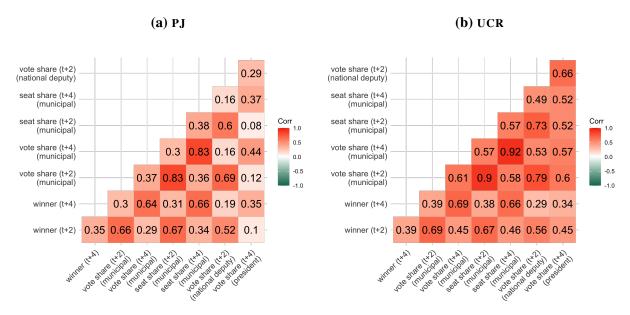


Figure A1: Correlation between outcome variables by party, 1983-2017. The only correlation with a p-value larger than 0.01 is the one between seat share $(municipal)_{t+2}$ and vote share $(president)_{t+4}$ in panel (a) (p = 0.018).

Table A3: Descriptive statistics

			PJ	07)				UCI		
		(N = 10	197)				(N = 8)	12)	
(a) Concurrent election years	N	mean	sd.	min	max	N	mean	sd.	min	max
$winner_t (0/100)$	1097	54.79	49.79	0.00	100.00	872	49.43	50.03	0.00	100.00
margin of victory _t (-100:100)	1097	4.05	20.10	-52.54	67.19	872	-1.83	18.74	-60.85	52.54
vote share $(municipal)_t$ (0:100)	1097	43.29	10.77	11.71	77.54	872	41.81	11.31	7.83	74.62
$winner_{t+2} (0/100)$		51.69			100.00	872	44.27	49.70		100.00
$winner_{t+4} (0/100)$	1096	55.29	49.74	0.00	100.00	872	42.09	49.40	0.00	100.00
vote share $(municipal)_{t+2}$ (0:100)	1097	37.65	12.54	0.21	66.26	872	36.47	12.73	2.95	67.02
vote share $(municipal)_{t+4}$ (0:100)	1096	43.10	12.52	2.15	100.00	872	38.30	15.45	1.15	74.62
seat share $(municipal)_{t+2}$ (0:100)	1097	44.38	18.45	0.00	100.00	872	41.84	17.46	0.00	100.00
seat share $(municipal)_{t+4}$ (0:100)		48.74			100.00		41.18			100.00
vote share (national deputy) $_{t+2}$ (0:100)		34.94		0.52	65.22		35.86		4.32	65.53
vote share (president) $_{t+4}$ (0:100)	855	40.58	11.11	10.94	70.37	598	28.88	17.25	0.53	74.88
copartisan president $_{t+2}$ (0/1)	1097	0.56	0.50	0.00	1.00	872	0.55	0.50	0.00	1.00
copartisan president _{t+4} (0/1)	1097	0.78	0.41	0.00	1.00	872	0.27	0.44	0.00	1.00
$popular\ copartisan\ president_{t+2}\ (0/1)$	614	0.42	0.49	0.00	1.00	481	0.25	0.43	0.00	1.00
$popular\ copartisan\ president_{t+4}\ (0/1)$	860	0.57	0.50	0.00	1.00	119	1.00	0.00	1.00	1.00
(b) Midterm election years		(N = 10	36)				(N = 9)	06)	
winner _t (0/100)	1036	57.14	49.51	0.00	100.00	906	48.12	49.99	0.00	100.00
margin of victory _t (-100:100)	1036	3.45	18.34	-46.70	57.42	906	-1.14	18.06	-57.42	46.70
vote share $(municipal)_t$ (0:100)	1036	39.68	10.66	15.30	66.26	906	38.22	10.91	5.97	67.02
$winner_{t+2} (0/100)$	1035	56.33	49.62	0.00	100.00	906	41.06	49.22	0.00	100.00
$winner_{t+4} (0/100)$	931	57.36	49.48	0.00	100.00	774	33.20	47.13	0.00	100.00
vote share $(municipal)_{t+2}$ (0:100)	1035	43.72	12.11	2.15	100.00	906	38.85	14.51	1.46	74.62
vote share $(municipal)_{t+4}$ (0:100)	931	38.88	12.24	3.32	73.14	774	33.75	14.00	2.04	67.02
seat share $(municipal)_{t+2}$ (0:100)	1035	49.72	16.52	0.00	100.00	906	41.87	17.30	0.00	100.00
seat share $(municipal)_{t+4}$ (0:100)	931	46.05	18.60	0.00	100.00	774	38.07	18.45	0.00	100.00
vote share (national deputy) $_{t+2}$ (0:100)	1018	43.46	9.25	6.22	75.04	865	34.22	13.13	0.95	66.76
vote share $(president)_{t+4}$ (0:100)	94	46.36	5.22	33.85	59.14	117	37.74	5.97	22.96	52.81
copartisan president _{t+2} (0/1)	1036	0.80	0.40	0.00	1.00	906	0.28	0.45	0.00	1.00
copartisan president _{t+4} (0/1)	1036	0.67	0.47	0.00	1.00	906	0.35	0.48	0.00	1.00
$popular\ copartisan\ president_{t+2}\ (0/1)$	833	0.54	0.50	0.00	1.00	124	1.00	0.00	1.00	1.00
<i>popular copartisan president</i> _{t+4} (0/1)	594	0.39	0.49	0.00	1.00	314	0.00	0.00	0.00	0.00

Period covered: 1983-2017. All samples are restricted to municipal elections in which the PJ (respectively, the UCR) finished in either the first or second place. The *popular copartisan president* variables are restricted to observations where there is a copartisan president in the first place. Full sample sizes are: for the PJ, 1179 and 1178 in concurrent and midterm elections, respectively; and for the UCR, 1139 and 1150, respectively.

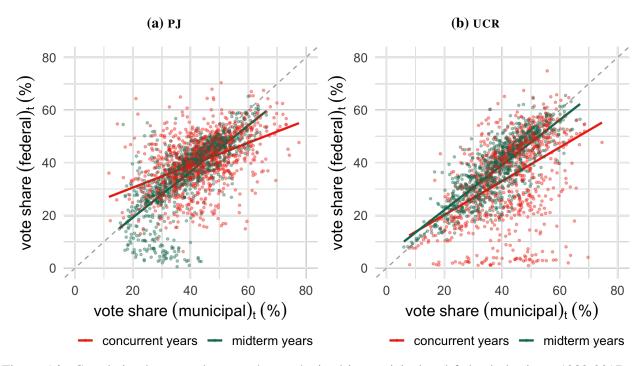


Figure A2: Correlation between the vote shares obtained in municipal and federal elections, 1983-2017. Solid and broken lines indicate regression lines and the 45 degree line, respectively. All regression lines are statistically significant at the 0.01 percent level.

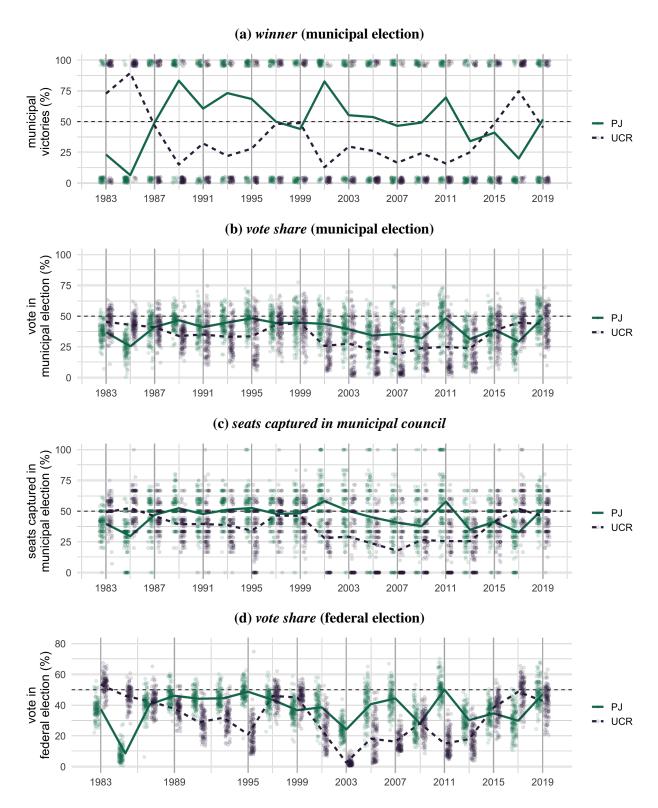


Figure A3: Evolution of outcomes over time, 1983-2019. Lines report average values by party, while points indicate individual observations. Gray vertical lines indicate concurrent (as opposed to midterm) elections. In panel (d), these (as well as the data) correspond to presidential elections.

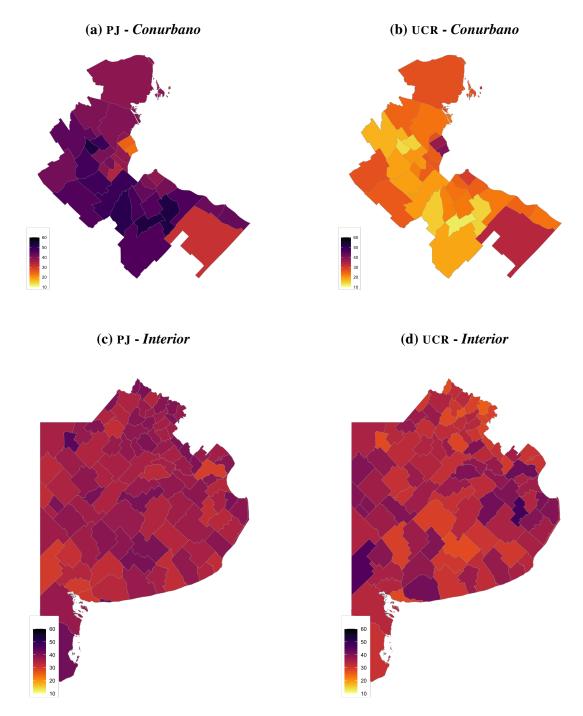


Figure A4: Average vote share in federal elections, 1983-2019. The boundaries of the *Conurbano* have changed over time. The top panels graphs the 33 municipalities mentioned in provincial law #13473 of 2006.

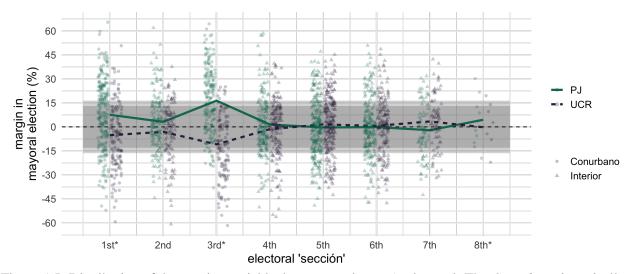
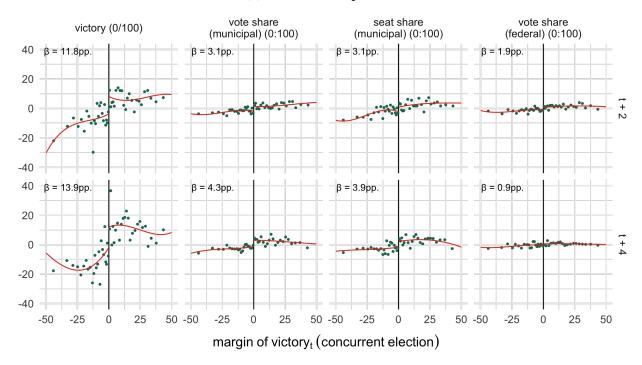



Figure A5: Distribution of the running variable, by party and *sección* electoral. The *Conurbano* is typically identified as the union of the first, third and eighth *secciones*. Lines report average values by party, while points indicate individual observations. The outer gray area indicates the maximum bandwidth reported in Table 1, while the inner gray area indicates the median bandwidth value in that table.

(a) PJ – Full sample

(b) UCR – Full sample

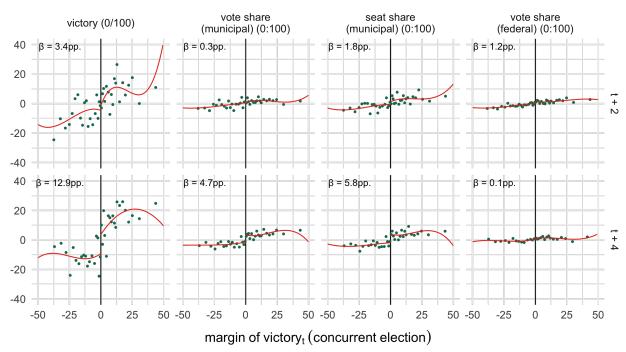
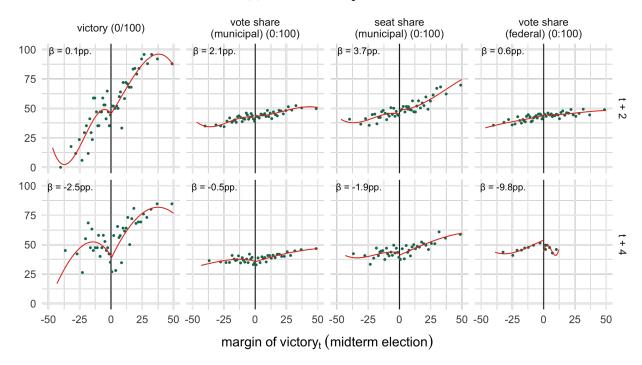


Figure A6: Mimicking variability RD plots with quantile-spaced bins – Demeaned outcomes. The labels at the top indicate the outcome variables, net of municipality and year fixed effects; those at the right give the date in which they were measured. Red lines indicate the fit of a third-order polynomial regression estimated separately at each side of the cutoff, using a uniform kernel.


B Balance checks and placebos

Density test. Figure A8 reports the density tests for the running variable at the threshold proposed by Cattaneo, Jansson and Ma (2020).

Balance checks. The mimicking-variance quantile-spaced RD plots displayed in Figure A9 and the RD estimates reported in Table A4 show that there is no incumbency effect on the *lagged* version of the outcome variables (i.e., on the outcomes variables measured at either t-2 or t-4).

Placebo: midterm elections. Table A5 replicates the results reported in the body of the paper, but estimated with data from *midterm* rather than concurrent elections. Thus, the "treatment" is no longer municipal incumbency but rather finishing first in the midterm, which confers no special institutional status.

(a) PJ – Full sample

(b) UCR – Full sample

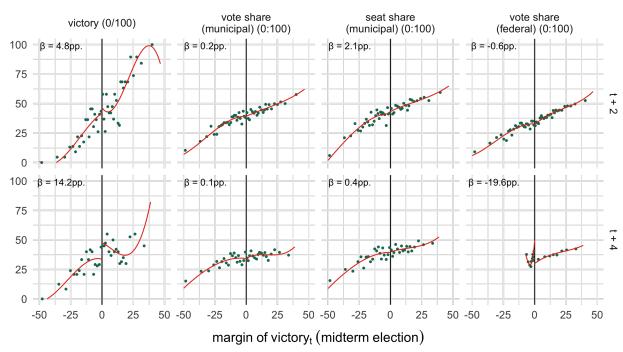


Figure A7: Mimicking variability RD plots with quantile-spaced bins – Midterm placebo. The labels at the top indicate the outcome variables; those at the right give the date in which they were measured. Red lines indicate the fit of a third-order polynomial regression estimated separately at each side of the cutoff, using a uniform kernel.

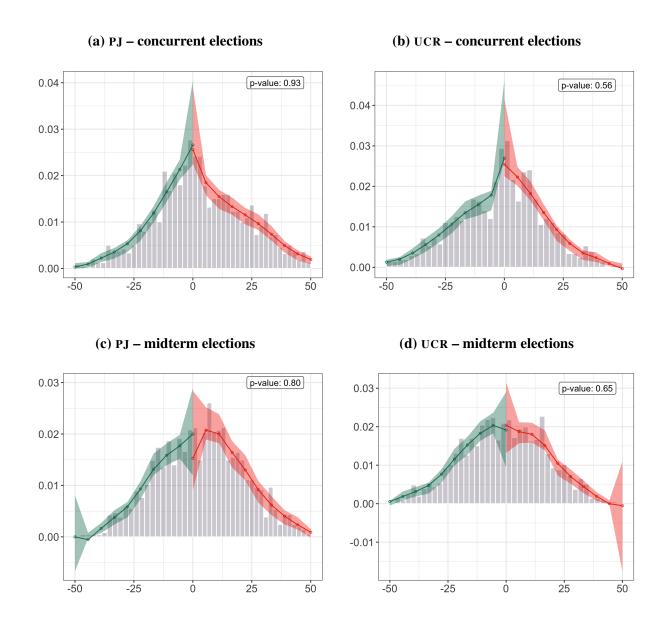
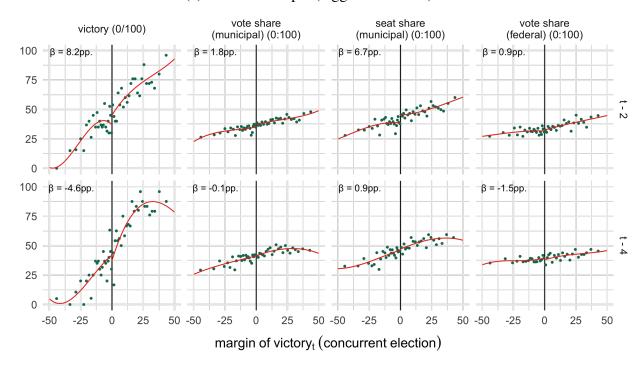



Figure A8: Cattaneo, Jansson and Ma's (2020) test of the density of the running variable at the threshold.

(a) PJ – Full sample (lagged outcomes)

(b) UCR – Full sample (lagged outcomes)

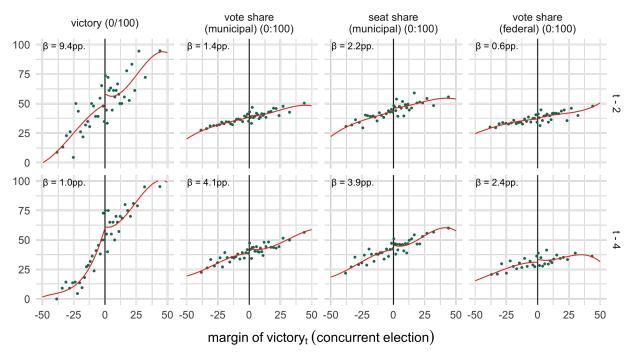


Figure A9: Mimicking variability RD plots with quantile-spaced bins – Lagged outcomes. The labels at the top indicate the outcome variables; those at the right give the (pre-treatment) date in which they were measured. Red lines indicate the fit of a third-order polynomial regression estimated separately at each side of the cutoff, using a uniform kernel.

Table A4: Balance checks: Mayoral incumbency effects on lagged outcomes, 1987-2019

	winner			share icipal)	seat : (muni			share eral)
(a) PJ	t-2	t-4	t-2	t-4	t-2	t-4	t-2	t-4
estimate $(\hat{\tau}_{RD})$	6.74	-2.65	2.12	-0.55	6.53	0.34	0.53	-3.39
95% CI	[-7.7:22.7]	[-16.9:11.1]	[-1.8:6.2]	[-3.5:2.1]	[1.8:12.4]	[-4.0:4.8]	[-4.6:5.4]	[-7.9:-0.3]
<i>p</i> -value	0.41	0.73	0.37	0.69	0.03	0.89	0.89	0.07
bwd.	16.79	16.04	12.94	12.84	17.06	11.38	14.18	10.57
N	326 314	314 303	283 253	281 252	330 320	251 226	292 269	187 149
control mean	33.47	27.39	32.98	37.71	37.23	41.16	31.25	37.78
(b) UCR								
estimate $(\hat{\tau}_{RD})$	8.52	2.65	1.94	2.82	2.58	1.80	1.77	1.39
95% CI	[-4.8:25.4]	[-11.9:19.0]	[-1.4:6.4]	[-2.2:9.1]	[-2.9:8.6]	[-4.1:9.0]	[-1.8:6.7]	[-6.3:10.3]
<i>p</i> -value	0.24	0.70	0.27	0.30	0.41	0.53	0.33	0.69
bwd.	16.42	16.16	10.75	12.04	11.09	11.94	10.22	11.81
N	250 272	249 271	171 202	188 227	176 208	187 226	162 189	130 173
control mean	32.85	25.10	33.35	33.16	37.58	34.99	33.96	27.34

Sharp (conventional) RD estimates, with robust CIs and p-values based on the MSE-optimal bandwidth proposed by Calonico, Cattaneo and Titiunik (2014). The running variable is $margin\ of\ victory_t$. For each reference party, the sample is restricted to municipal elections (i) held in concurrent years; and (ii) in which the party finished in the first or second place. To calculate the estimates, we clustered observations by municipality and fitted a separate local linear regression at both sides of the threshold, using a triangular kernel. Reported number of observations corresponds to the *effective* sample size.

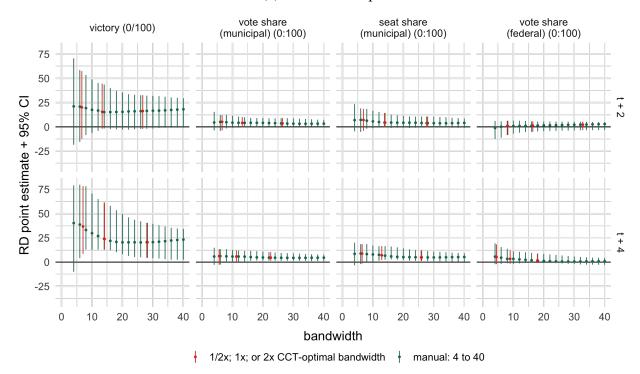
Table A5: Placebo tests: "Incumbency" effect in midterm elections, 1985-2013

	winner			vote share (municipal)		share icipal)	vote s (fede	
(a) PJ	t+2	t+4	t+2	t+4	t+2	t+4	t+2	t+4
estimate $(\hat{\tau}_{RD})$	6.28	-5.89	1.09	-1.33	3.54	-3.02	2.45	-0.70
95% CI	[-10.9:31.5]	[-31.5:21.0]	[-3.7:7.0]	[-8.9:6.4]	[-1.2:9.7]	[-14.1:9.3]	[-4.3:11.7]	[-7.1:5.8]
<i>p</i> -value	0.39	0.72	0.57	0.77	0.17	0.72	0.37	0.86
bwd.	11.22	13.02	14.00	13.17	11.94	16.81	14.18	11.80
N	208 243	206 261	246 300	208 262	219 255	268 320	194 236	195 233
control mean	36.71	47.96	40.47	36.91	43.69	42.45	39.35	35.93
(b) UCR								
estimate $(\hat{\tau}_{RD})$	4.89	0.15	0.16	-0.28	2.25	0.73	-2.09	-1.32
95% CI	[-16.3:33.5]	[-36.6:22.9]	[-5.6:7.2]	[-9.7:6.6]	[-3.8:10.2]	[-10.9:10.6]	[-17.9:10.3]	[-11.4:7.0]
<i>p</i> -value	0.54	0.69	0.83	0.72	0.42	0.98	0.61	0.62
bwd.	13.26	8.03	14.59	11.14	16.81	12.16	12.87	17.48
N	239 224	137 116	257 249	190 166	286 289	205 176	169 156	262 239
control mean	24.89	26.20	32.87	31.23	34.95	34.44	23.19	30.64

Sharp (conventional) RD estimates, with robust CIs and p-values based on the MSE-optimal bandwidth proposed by Calonico, Cattaneo and Titiunik (2014). All outcome variables were demeaned of municipality and year fixed effects. The running variable is $margin\ of\ victory_t$. For each reference party, the sample is restricted to municipal elections (i) held in midterm years; and (ii) in which the party finished in the first or second place. To calculate the estimates, we clustered observations by municipality and fitted a separate local linear regression at both sides of the threshold, using a triangular kernel. Reported number of observations corresponds to the *effective* sample size.

C Robustness checks

Sensitivity to bandwidth choice. Figure A10 shows that the findings reported in Table 1 are not overly sensitive to bandwidth choice. Except in the case of very small bandwidths – with the accompanying reduction in the number of observations –, the results remain broadly similar.


CER-optimal bandwidth. Table A6 replicates the results reported in the body of the paper but employing CER-optimal instead of MSE-optimal bandwidths.

Clustering standard errors by year. Table A7 replicates the results reported in the body of the paper but clustering the standard errors by year rather than by municipality. Note that since the RD estimator minimizes the bias-variance trade-off, this alters not only the confidence intervals, but the point estimates as well (Calonico, Cattaneo and Titiunik 2014).

Second-order polynomials. Table A8 replicates the results reported in the body of the paper but employing a second-order polynomial instead of a local linear regression.

Demeaned outcomes. Table A9 replicates the results reported in the body of the paper, but demeaning the outcome variables out of municipality and year fixed effects.

(a) PJ – Full sample

(b) UCR – Full sample

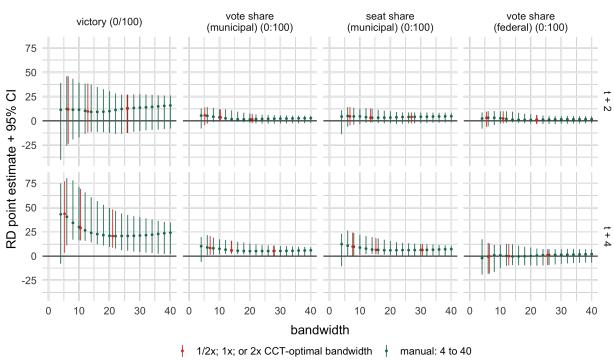


Figure A10: Sharp (conventional) RD estimates, with robust 95% CIs. The running variable is margin of $victory_t$. For each reference party, the sample is restricted to municipal elections (i) held in concurrent years; and (ii) in which the party finished in the first or second place. To calculate the estimates, we clustered observations by municipality and fitted a separate local linear regression at both sides of the threshold, using a triangular kernel. The CCT-optimal bandwidth is the (MSE-optimal) bandwidth reported in Table 1.

Table A6: Robustness checks (I): CER-optimal bandwidths

	winner		vote s (muni		seat s (muni			share 'eral)
(a) PJ	t+2	t+4	t+2	t+4	t+2	t+4	t+2	t+4
estimate $(\hat{\tau}_{RD})$	15.39	25.96	4.21	5.76	4.45	7.83	1.43	3.16
95% CI	[-18.5:48.7]	[5.3:52.4]	[-3.4:12.5]	[1.0:11.8]	[-4.7:15.0]	[2.5:15.0]	[-9.8:11.2]	[-4.4:12.9]
<i>p</i> -value	0.41	0.02	0.30	0.03	0.35	0.01	0.90	0.36
bwd.	18.61	12.54	17.27	10.83	15.14	10.59	18.22	10.68
N	368 342	291 250	352 331	251 220	323 296	247 214	356 333	181 168
control mean	30.24	31.85	32.44	38.15	37.05	42.13	29.71	37.69
(b) UCR								
estimate $(\hat{\tau}_{RD})$	9.49	29.78	4.08	6.16	3.19	7.12	1.90	-0.10
95% CI	[-26.4:46.4]	[10.0:55.9]	[-1.4:11.9]	[-0.0:13.8]	[-4.8:11.0]	[0.3:15.0]	[-5.2:10.8]	[-19.9:17.6]
<i>p</i> -value	0.61	0.01	0.13	0.05	0.46	0.05	0.50	0.90
bwd.	13.29	10.14	8.72	13.23	14.50	13.14	12.16	17.73
N	215 270	166 207	147 177	215 269	230 278	214 268	194 243	190 186
control mean	22.22	19.50	30.87	31.51	33.80	33.21	30.70	27.23

Sharp (conventional) RD estimates, with robust CIs and p-values based on the CER-optimal bandwidth proposed by Calonico, Cattaneo and Titiunik (2014). The running variable is $margin\ of\ victory_t$. For each reference party, the sample is restricted to municipal elections (i) held in concurrent years; and (ii) in which the party finished in the first or second place. To calculate the estimates, we clustered observations by municipality year and fitted a separate local linear regression at both sides of the threshold, using a triangular kernel. Reported number of observations corresponds to the effective sample size.

Table A7: Robustness checks (II): Clustering standard errors by year

	winr	ner		vote share (municipal)		share (cipal)		share leral)
(a) PJ	t+2	t+4	t+2	t+4	t+2	t+4	t+2	t+4
estimate $(\hat{\tau}_{RD})$	15.75	23.40	4.07	5.77	4.38	7.40	1.58	2.79
95% CI	[-17.7:48.5]	[3.8:50.6]	[-3.2:12.2]	[1.5:11.7]	[-4.3:14.9]	[2.6:14.6]	[-9.7:11.0]	[-4.3:12.8]
<i>p</i> -value	0.40	0.03	0.30	0.02	0.33	0.01	0.91	0.36
bwd.	21.50	14.49	19.96	12.52	17.49	12.24	21.06	12.19
N	396 380	317 284	380 363	290 250	355 332	286 247	384 367	205 192
control mean	30.24	31.85	32.44	38.15	37.05	42.13	29.71	37.69
(b) UCR								
estimate $(\hat{\tau}_{RD})$	9.14	27.06	3.70	5.63	3.32	6.49	1.24	0.17
95% CI	[-26.4:45.8]	[8.5:54.0]	[-1.4:12.0]	[-0.6:13.7]	[-4.8:11.2]	[-0.3:14.5]	[-5.7:10.5]	[-19.8:17.5]
<i>p</i> -value	0.61	0.01	0.13	0.07	0.45	0.07	0.56	0.90
bwd.	15.35	11.72	10.08	15.29	16.76	15.19	14.05	20.23
N	245 286	190 237	165 203	244 286	258 301	240 285	216 268	209 198
control mean	22.22	19.50	30.87	31.51	33.80	33.21	30.70	27.23

Sharp (conventional) RD estimates, with robust CIs and p-values based on the MSE-optimal bandwidth proposed by Calonico, Cattaneo and Titiunik (2014). The running variable is $margin\ of\ victory_t$. For each reference party, the sample is restricted to municipal elections (i) held in concurrent years; and (ii) in which the party finished in the first or second place. To calculate the estimates, we clustered observations by (election) year and fitted a separate local linear regression at both sides of the threshold, using a triangular kernel. Reported number of observations corresponds to the effective sample size.

Table A8: Robustness checks (III): Employing second-order polynomials

	winner			vote share (municipal)		share cipal)		e share deral)
(a) PJ	t+2	t+4	t+2	t+4	t+2	t+4	t+2	t+4
estimate $(\hat{\tau}_{RD})$	17.19	37.65	4.27	6.56	6.20	9.49	0.62	4.58
95% CI	[-1.5:38.1]	[16.9:66.2]	[-0.7:9.0]	[1.9:11.9]	[-0.2:13.9]	[3.6:17.3]	[-4.5:5.3]	[-0.4:10.4]
<i>p</i> -value	0.10	0.00	0.13	0.02	0.09	0.01	0.87	0.11
bwd.	18.25	13.45	16.68	16.45	15.08	14.94	21.34	14.11
N	362 338	307 267	346 317	340 316	321 295	320 293	389 371	220 214
control mean	30.24	31.85	32.44	38.15	37.05	42.13	29.71	37.69
(b) UCR								
estimate $(\hat{\tau}_{RD})$	11.05	39.43	5.54	9.18	3.27	11.00	3.65	-0.45
95% CI	[-9.4:35.9]	[19.0:67.2]	[1.0:12.1]	[3.5:16.8]	[-2.8:9.4]	[3.5:21.1]	[-1.0:9.7]	[-9.9:8.5]
<i>p</i> -value	0.30	0.00	0.03	0.01	0.34	0.01	0.14	0.90
bwd.	16.90	12.83	13.46	13.85	21.13	13.50	15.06	20.02
N	260 302	211 261	216 273	219 274	304 346	216 273	233 274	209 197
control mean	22.22	19.50	30.87	31.51	33.80	33.21	30.70	27.23

Sharp (conventional) RD estimates, with robust CIs and p-values based on the MSE-optimal bandwidth proposed by Calonico, Cattaneo and Titiunik (2014). The running variable is $margin\ of\ victory_t$. For each reference party, the sample is restricted to municipal elections (i) held in concurrent years; and (ii) in which the party finished in the first or second place. To calculate the estimates, we clustered observations by municipality and fitted a separate second-order polynomial regression at both sides of the threshold, using a triangular kernel. Reported number of observations corresponds to the *effective* sample size.

Table A9: Robustness checks (IV): Demeaned outcomes

	winner			share cipal)		share icipal)		share eral)
(a) PJ	t+2	t+4	t+2	t+4	t+2	t+4	t+2	t+4
estimate $(\hat{\tau}_{RD})$	10.68	19.60	4.41	4.65	4.54	6.25	2.18	0.38
95% CI	[-1.1:24.0]	[5.9:39.0]	[2.6:7.3]	[1.4:8.3]	[0.9:10.3]	[2.8:11.4]	[0.4:4.5]	[-1.3:1.9]
<i>p</i> -value	0.11	0.02	0.00	0.02	0.04	0.00	0.04	0.77
bwd.	13.77	11.50	10.19	17.61	10.37	11.17	12.49	11.54
N	310 272	265 233	245 212	357 334	247 214	257 227	284 248	196 180
control mean	-7.84	-11.46	-1.85	-2.44	-2.41	-2.71	-1.30	-0.60
(b) UCR								
estimate $(\hat{\tau}_{RD})$	2.37	19.47	0.78	4.37	1.04	5.29	1.38	-0.03
95% CI	[-18.7:22.2]	[4.7:39.6]	[-3.6:5.8]	[0.3:8.9]	[-5.2:6.3]	[-0.9:12.8]	[-2.0:5.3]	[-3.0:2.2]
<i>p</i> -value	0.89	0.04	0.71	0.08	0.88	0.16	0.48	0.78
bwd.	11.20	10.11	9.23	12.31	12.03	10.68	10.28	12.08
N	182 224	165 204	154 187	200 252	193 245	172 215	163 207	132 154
control mean	-7.26	-11.42	-1.05	-2.77	-1.98	-3.02	-1.32	-0.51

Sharp (conventional) RD estimates, with robust CIs and p-values based on the MSE-optimal bandwidth proposed by Calonico, Cattaneo and Titiunik (2014). All outcome variables were demeaned of municipality and year fixed effects. The running variable is $margin\ of\ victory_t$. For each reference party, the sample is restricted to municipal elections (i) held in concurrent years; and (ii) in which the party finished in the first or second place. To calculate the estimates, we clustered observations by municipality and fitted a separate local linear regression at both sides of the threshold, using a triangular kernel. Reported number of observations corresponds to the *effective* sample size.

Table A10: Robustness checks (V): Heterogeneous effects by president copartisanship

	win	ner		share icipal)	seat s (muni			share 'eral)
(a) PJ, copartisan	t-2	t-4	t-2	t-4	t-2	t-4	t-2	t – 4
estimate $(\hat{\tau}_{RD})$	37.88	20.33	8.82	6.55	9.65	8.10	5.69	6.06
95% CI	[20.6:63.2]	[3.2:42.7]	[4.6:14.6]	[2.8:11.7]	[3.6:16.5]	[3.0:15.7]	[1.7:10.5]	[2.1:12.4]
<i>p</i> -value	0.00	0.05	0.00	0.01	0.01	0.01	0.02	0.01
bwd.	10.32	13.38	14.92	12.23	13.77	10.77	16.81	8.34
N	118 123	214 217	145 163	201 200	143 155	178 177	153 182	123 118
control mean	26.61	31.20	31.48	36.72	35.12	40.59	34.20	36.13
(b) PJ, opposition								
estimate $(\hat{\tau}_{RD})$	-1.88	45.35	-0.62	3.26	3.01	8.78	-5.09	-1.93
95% CI	[-32.9:24.2]	[16.6:81.7]	[-6.1:5.2]	[-2.9:9.8]	[-5.9:14.0]	[1.1:19.6]	[-13.8:1.3]	[-12.9:7.0]
<i>p</i> -value	0.80	0.01	0.89	0.37	0.50	0.06	0.17	0.64
bwd.	11.15	8.65	11.77	9.82	8.92	7.74	13.67	9.92
N	133 97	57 35	144 103	64 39	111 79	47 34	164 115	34 22
control mean	33.09	33.33	33.19	41.35	38.56	45.59	26.20	44.56
(c) UCR, copartisa	an							
estimate $(\hat{\tau}_{RD})$	-15.62	29.81	1.15	3.74	2.59	0.33	-0.75	-7.47
95% CI	[-45.4:9.5]	[-0.9:62.1]	[-4.2:7.0]	[-4.2:12.3]	[-5.1:10.6]	[-8.1:7.5]	[-6.3:4.2]	[-15.8:-2.7]
<i>p</i> -value	0.28	0.11	0.69	0.42	0.56	0.96	0.73	0.02
bwd.	10.47	13.93	11.47	10.95	11.29	15.19	11.75	9.05
N	87 133	47 95	97 142	38 72	96 139	51 99	96 144	17 28
control mean	27.23	10.26	30.52	36.14	34.41	39.45	32.96	39.93
(d) UCR, opposition	on							
estimate $(\hat{\tau}_{RD})$	43.01	30.75	7.80	7.35	5.34	8.37	6.13	-0.30
95% CI	[23.0:69.2]	[12.9:57.4]	[3.9:14.5]	[2.2:14.1]	[-0.6:11.0]	[2.0:15.9]	[0.6:14.4]	[-8.9:7.5]
<i>p</i> -value	0.00	0.01	0.00	0.02	0.11	0.03	0.07	0.89
bwd.	11.51	9.22	9.27	13.03	19.14	16.52	10.54	14.06
N	89 87	119 128	73 72	167 175	134 116	200 192	83 79	127 123
control mean	17.99	21.49	31.16	30.52	33.28	31.86	28.91	25.01

Sharp (conventional) RD estimates, with robust CIs and p-values based on the MSE-optimal bandwidth proposed by Calonico, Cattaneo and Titiunik (2014). The running variable is $margin\ of\ victory_t$. Standard errors are clustered by municipality. Presidential copartisanship is measured at the same time as the outcome variable. Samples are restricted to municipal elections (i) held in concurrent years; and (ii) in which the party finished in the first or second place. Reported number of observations corresponds to the *effective* sample size.

Table A11: Robustness checks (VI): Heterogeneous effects by presidential approval (PJ only)

	winner			share (cipal)	seat s (muni	share cipal)		share eral)
(a) High approval	t-2	t-4	t-2	t-4	t-2	t-4	t-2	t-4
estimate $(\hat{ au}_{RD})$	28.71	25.68	9.97	6.14	12.48	9.54	6.80	8.49
95% CI	[0.1:70.1]	[5.1:49.7]	[3.0:19.0]	[1.1:12.8]	[0.9:28.0]	[1.1:20.6]	[-1.2:15.3]	[2.6:17.5]
<i>p</i> -value	0.09	0.04	0.02	0.04	0.07	0.07	0.16	0.02
bwd.	13.25	21.18	19.01	19.08	17.76	12.40	16.59	9.30
N	49 53	153 155	63 72	145 145	61 70	111 100	56 64	86 76
control mean	24.72	32.50	26.18	34.74	30.12	39.25	31.97	34.14
(b) Low approval								
estimate $(\hat{\tau}_{RD})$	36.53	37.38	7.55	5.72	7.54	7.27	4.68	1.90
95% CI	[13.8:67.6]	[8.2:83.6]	[1.6:13.1]	[1.2:11.9]	[-0.2:14.0]	[1.0:16.9]	[-0.5:9.8]	[-2.1:7.4]
<i>p</i> -value	0.01	0.04	0.03	0.04	0.10	0.06	0.14	0.36
bwd.	10.29	6.79	13.86	11.06	13.64	8.84	15.26	11.77
N	76 82	59 70	92 100	82 95	92 99	72 82	91 107	55 65
control mean	31.06	33.56	31.49	36.10	36.52	40.89	27.61	34.14

Sharp (conventional) RD estimates, with robust CIs and *p*-values based on the MSE-optimal bandwidth proposed by Calonico, Cattaneo and Titiunik (2014). The running variable is *margin of victory_t*. Standard errors are clustered by municipality. Samples are restricted to instances in which the outcome variable was measured in an election in which the president was from the PJ. "High" (respectively, "Low") approval means that in the quarter before the election, the president's net approval rating was above (below) the median value for the full period (see Table A1). The sample is restricted to municipal elections (i) held in concurrent years; and (ii) in which the PJ finished in the first or second place. Reported number of observations corresponds to the *effective* sample size.