When the Partisan Becomes Personal

Mayoral Incumbency Effects in Buenos Aires, 1983-2019 *

Germán Feierherd Department of Political Science UdeSA

gfeierherd@udesa.edu.ar

Adrián Lucardi Department of Political Science ITAM

adrian.lucardi@itam.mx

March 18, 2022

A burgeoning literature finds that incumbency effects reflect mostly a personal rather than a partisan advantage. We attribute this to incumbents' mobilization incentives. Incumbents have weaker incentives to exert costly effort on behalf of their copartisans in national races than in local ones, where their local power is at stake. We examine these implications in the Province of Buenos Aires, Argentina's largest subnational unit, where midterm elections give mayors a strong incentive to help their copartisans running for the local council, but much weaker ones to support those running for a national seat. Using a regression discontinuity design, we find a large positive effect of incumbency in local mayoral and midterm elections. In contrast, local incumbents neither help nor hurt their copartisans running for the presidency or the national legislature.

Keywords: incumbency effects - regression discontinuity - Argentina - Buenos Aires

Word count: 7,920

^{*} Adrián Lucardi thanks the Asociación Mexicana de Cultura, A.C. for financial support. Benjamín Contreras, Alec Lucena, Renata Millet and Monserrat Pérez provided invaluable research assistance. Upon publication, replication data will be uploaded to the authors' websites. The usual disclaimer applies.

Incumbent candidates often enjoy a large electoral advantage over their opponents. In the United States, legislative candidates who win a seat by a small margin receive, on average, a 7-10 percentage point bonus over comparable candidates who lose narrowly (Lee, 2008; Cattaneo, Frandsen and Titiunik, 2015; Erikson and Titiunik, 2015). Comparable effects have been documented in Denmark (Dahlgaard 2016), Finland (Kotakorpi, Poutvaara and Terviö 2017) and Norway (Cirone, Cox and Fiva 2021), among other places. Argentine lawmakers can also expect better career prospects than comparable but unsuccessful candidates (Micozzi and Lucardi 2021).

To a large extent, this advantage seems to be *personal* – i.e., accruing to an individual politician – rather than *partisan* – the electoral benefit a party can expect from controlling a given district, regardless of its candidates' identities (Broockman, 2009; Folke and Snyder, 2012; Schiumerini and Page, 2012; Fowler and Hall, 2014; Erikson, Folke and Snyder, 2015; Klašnja, 2015; Lucardi and Rosas, 2016; Klašnja and Titiunik, 2017; Lopes da Fonseca, 2017; Feierherd, 2020). What explains this discrepancy? Why do individual incumbents fail to translate their personal popularity to their parties?

We emphasize the role of mobilization incentives. Actively backing a candidacy is a costly action that requires effort, which in turn introduces collective action problems within party organizations (Stokes et al. 2013; Camp 2017; Cox et al. forthcoming; Hollyer, Klašnja and Titiunik forthcoming; Rau, Sarkar and Stokes N.d.). Simply put, while incumbents have obvious incentives to promote *their own individual candidacies*, they may care less about their copartisans' electoral fates. Indeed, lower-level incumbents may actively *dissociate* their electoral fate from that of rival factions within their party and/or unpopular copartisans running for higher-level offices – for example by failing to mobilize voters on election day or even encouraging split-ticket voting.

Previous work has documented how incumbents' stakes in an election outcome is shaped by institutional features such as term limits (Fowler and Hall, 2014; Klašnja and Titiunik, 2017; Lopes da Fonseca, 2017), direct primaries (Olson, 2020) and party switching rules (Novaes, 2018). Extending this literature, we look at the electoral calendar, which affects the extent to which the

incumbent has skin in the game even when (s)he does not appear in the ballot. In the Province of Buenos Aires (henceforth, PBA), Argentina's largest province, mayors have strong incentives to exert effort in local executive elections, as they are allowed to (and often seek) reelection. But they also have an interest in helping their copartisans in local midterm elections – *inter alia*, the local council approves the local budget and can impeach the mayor. Their incentives to mobilize voters for their party in congressional or presidential elections are much weaker, however: not only are they unlikely to affect the winner of the presidential race, or which party controls a majority in Congress; but they may also want to decouple their electoral fate from that of unpopular national candidates from their own party.

Thus, we expect strong incumbency effects in local races, where mayors have a personal stake in the outcome; but weaker – or even negative – effects in national-level contests. Consistent with this story, our regression discontinuity estimates show that candidates from Argentina's two main parties – the Peronist or Justicialist Party (PJ) and the Radical Civic Union (UCR) – are 24 to 29 percentage points more likely to recapture the local government following a narrow victory in a mayoral election. The mayor's party also benefits – though more modestly – in midterm elections two years later, receiving a 4-6 pp. boost in its vote share, which translates into a 3-7 pp. increase in the proportion of council seats captured. However, this electoral dominance completely vanishes in federal races: even though local and federal races are held in the same day and the voting technology discourages split-ticket voting, mayors neither benefit nor harm their copartisans in higher-level contests. In line with our claim that these results are driven by mobilization efforts, we find some suggestive evidence that unpopular presidents and national opposition parties are affected the most by these dynamics.

Summing up, our findings are consistent with a large *personal* advantage among PBA mayors but we also find a pure *partisan* advantage – that is, in races in which the incumbent executive is not on the ballot – in local races. Presidential and congressional candidates, in contrast, are not much advantaged by having a copartisan incumbent in the territory. This is despite the fact that the

voting technology employed in Argentina discourages split-ticket voting (Barnes, Tchintian and Alles 2017).

While politicians' mobilization strategies need not be the entire story behind the difference between personal and partisan incumbency effects – voters' preferences for certain candidates may also contribute to it – we believe this makes a difference, as mayors' efforts to disentangle their electoral fate from their copartisans' is both amply documented in the media (see below), and consistent with the literature on how other Argentine subnational executives "protect" their territories from unwelcome national-level developments (Calvo and Escolar 2005; Gibson 2005; Suárez-Cao 2021). Thus, our work also speaks to the literature on the "incumbency curse" in the developing world. Instead of attributing this phenomenon to hard-to-change factors like corruption, limited state capacity, weak party labels or voters' limited information (Uppal, 2009; Klašnja, 2015; Schiumerini, 2017; Feierherd, 2020), our findings show that this incumbency curse is not an inevitable feature of young democracies, and may be affected by institutional incentives.

We also contribute to the understanding of Argentine politics. Like us, both Battocchio (2018) and Núñez (2018) use data from local elections in the PBA to document incumbency effects; nonetheless, in this paper we both extend and complement theirs. Theoretically, Núñez (2018) claims that members of clientelist parties always have an incentive to mobilize; in contrast, our argument suggest that incumbents – including those who control machine-type organizations – sometimes work to detach themselves from the electoral fortunes of their copartisans. Furthermore, his empirical analysis is limited to the PJ, Argentina's clientelist party *par excellence*. We also study incumbency effects for the UCR, and find little difference between the two. In turn, Battocchio (2018) examines both the PJ and the UCR but looks at mayoral elections only, while we investigate the effect of incumbency across a range of elections.

Theoretical framework

An incumbency effect refers to the consequences (*ceteris paribus*) that occupying an office has on some outcome(s) of interest. In this paper we focus on how capturing an executive office at time t affects a party's electoral fortunes at t+1. According to the literature, this effect has both a *personal* and a *partisan* component (Fowler and Hall 2014; Erikson and Titiunik 2015; Lopes da Fonseca 2017). The former captures the extent to which individual officeholders enjoy an electoral (dis)advantage over similar candidates that lost the previous election just by virtue of being the incumbent. Since this effect is driven by the actions and characteristics of the individual, it could be positive even for incumbents who switch parties. Partisan incumbency effects, on the other hand, refer to the electoral benefits or costs that a candidate of a given party may expect in a district when a copartisan politician is the incumbent in that district.

Personal and partisan effects may differ for a variety of reasons. One is the degree to which party labels provide information about politicians' characteristics (Lupu 2016; Feierherd 2020). When labels are strong, voters may infer that an incumbent's (un)desirable characteristics extend to her copartisans, making them more (or less) likely to support other candidates from the same party even when the incumbent is not in the ballot. This may be consistent with either positive or negative incumbency effects, depending on whether voters reward both incumbents *and* their parties, or punish both of them simultaneously. Except in the case in which voters deliberately support the opposition in midterm elections in order to balance the incumbent's power (Folke and Snyder 2012), personal and partisan effects should at least go in the same direction. In contrast, weak and uninformative party labels predict negligible partisan effects, as voters pay little attention to partisan identification when evaluating candidates (Feierherd 2020).

Personal and partisan effects may also vary because incumbents can choose how long and how hard they campaign, both for their own re-election and on behalf of their copartisans. This is no small matter, as politicians often endorse other candidates not only through low-costs chan-

nels, such as social media posts or appearing in photos together, but also by making campaign appearances, spending resources or mobilizing their patronage machines. Moreover, even if the association that parties evoke in voters' minds may be hard to change in the short term, the extent to which candidates' partisan affiliations are emphasized during a campaign also depends on politicians' deliberate effort.

Politicians' decisions to exert effort on behalf of their parties is plagued by collective action problems. While a strong brand may be valuable for all politicians running under a common banner, individually everybody is better off by shifting the cost of building such a brand into others (Hollyer, Klašnja and Titiunik forthcoming; Cox et al. forthcoming). Politicians' (and brokers') incentives to mobilize voters and poll workers on behalf of their parties is subject to a similar logic (Stokes et al. 2013; Camp 2017; Novaes 2018; Rosas and Lucardi 2020; Ascencio 2021; Hollyer, Klašnja and Titiunik forthcoming; Rau, Sarkar and Stokes N.d.). The upshot is that incumbents (as well as candidates and party members more generally) should exert substantial effort when they have skin in the game and/or care about the election outcome personally, but little when their own political future is not at stake. These considerations explain why strong personal incumbency effects often disappear when incumbents are term limited (Fowler and Hall 2014; Lopes da Fonseca 2017; Klašnja and Titiunik 2017); why direct primaries generate strong mobilization efforts (Ascencio 2021) and increase incumbents' personal advantage (Olson 2020); and why turnout is substantially lower in referenda – where there is little for individual politicians and brokers to fight over – than in candidate elections (Rau, Sarkar and Stokes N.d.).

These intra-party cooperation problems may explain in part why personal effects are often positive while partisan effects are smaller or even negative. Some political or institutional circumstances, however, may encourage intra-party cooperation. For example, incumbents may exert more effort if they have a family member on the ballot, are ideologically or factionally motivated, or expect higher-level copartisans to favor them in the disbursement of funds. Sustaining intra-party cooperation should also be easier when formal rules limit party switching (Novaes 2018)

or when elections for multiple offices take place in the same day under a voting technology that discourages ticket splitting (Engstrom and Kernell 2005; Barnes, Tchintian and Alles 2017).

Two such features are relevant to our case. First, executives have good reasons to care about the election of legislators who may approve, reject or amend their initiatives, as well as monitor or impeach them. Insofar as executives expect higher support from copartisan legislators, they should exert effort and devote resources to help copartisan candidates running in legislative elections. Moreover, because local governments and the local legislature are elected by the same electorate, the incumbent has the means to affect such elections. In contrast, local incumbents are unlikely to be pivotal in national-level contests, and thus may exert less effort in these races.

Second, the political context should affect the extent to which lower-level incumbents mobilize voters on behalf of copartisan candidates. Upper-level party leaders should be in a better position to coordinate, monitor (e.g., through the deployment of street-level bureaucrats), and reward copartisan incumbents when they themselves control an elected office. Thus, lower-level incumbents should work harder for their party when the party holds the presidency (or the governorship) than when the party is in opposition at the national (or provincial) level. Even then, the continuation of the flow of benefits from upper-level officials is conditional on the party's capacity to remain in office. If the higher-level government is unpopular and thus unlikely to remain in office for long, incentives to collaborate with it decrease, as it will not be able to repay past favors. Similarly, coattail effects can cut both ways depending on the popularity of the upper-level candidate(s). Simply put, when the latter is popular, local politicians will want to ride on his or her coattails, but if (s)he is unpopular, they will try to distance themselves from him or her – e.g., by actively encouraging split-ticket voting.

Institutional Background

With almost 40% of the country's population, the province of Buenos Aires (PBA) is a crucial district in both presidential and congressional elections. Its 135 mayors¹ control well-oiled patronage machines and often seek re-election, which leads us to expect positive incumbency effects. At the same time, while electoral competition is structured along party lines, both the electoral calendar and institutional decentralization mean that mayors' incentives to collaborate with their parties vary greatly at the local and national levels.

There is substantial variation among PBA municipalities. In 2019, the largest ones – such as La Matanza (1.12M registered voters) or Lomas de Zamora (0.54M) – had more inhabitants than the country's five least populated provinces, making their mayors national political players. At the same time, the median municipality had less than 30K registered voters. These distinctions follow clear geographical lines. The bulk of the province's population is located in the *Conurbano*, a former industrial belt surrounding the City of Buenos Aires, the country's capital city and its wealthiest subnational unit. While the *Conurbano* includes some affluent districts, it also concentrates roughly 25% of Argentina's poor.

As Figure 1 shows, the *Conurbano* is a major electoral stronghold of the *Partido Justicialista* or *Peronista* (PJ), which has controlled both the provincial governorship and the country's presidency during most of the period under study (see Table A1). In contrast, and with the exception of two wealthy municipalities, the *Unión Cívica Radical* (UCR) has fared abysmally in the area (see Figure 1b). While both parties employ networks of party brokers, it is the Peronists who have the strongest clientelistic networks (Calvo and Murillo, 2013). Both the PJ and the UCR tend to fare well in the far less populated municipalities that compose the "Interior" region – home to the country's agricultural heartland (see the bottom panels of Figure 1).²

¹In 1983, the PBA had 125 municipalities. Since then, a series of splits (mostly in 1995) increased the number to 135.

²Figure A4 shows an almost identical pattern in federal elections.

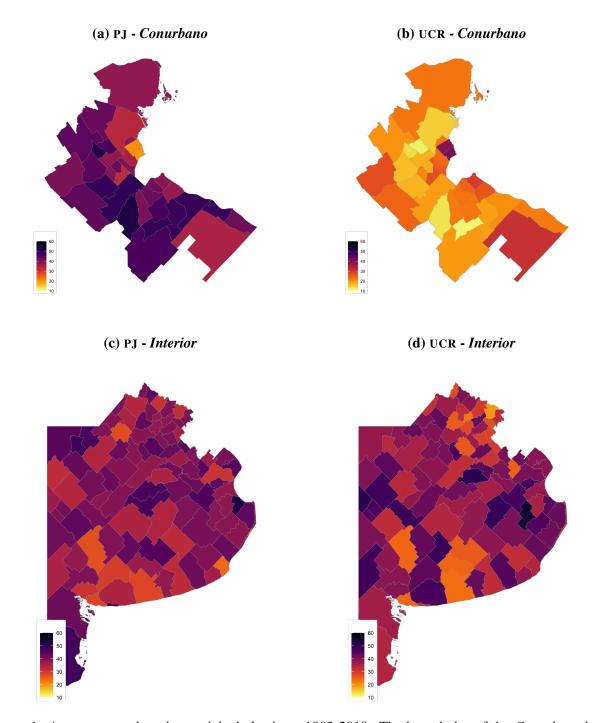


Figure 1: Average vote share in municipal elections, 1983-2019. The boundaries of the *Conurbano* have changed over time. Panels (a) and (b) graph the 33 municipalities listed in provincial law #13473 of 2006.

Unlike their counterparts in Mexico (no immediate re-election of any kind before 2014) or Brazil (mayors are limited to two consecutive terms), PBA mayors face no term limits.³ They

 $^{^{3}}$ This is scheduled to change in 2027, when mayors elected in 2019 will not be eligible to run for a third term.

make ample use of this opportunity: for instance, 75% of PJ and UCR mayors elected in 2011 and 2015 sought re-election, and 74% of them (roughly 55% of the sample) were successful. Furthermore, the electoral calendar provides mayors with plenty of opportunities to exert their electoral influence. Mayors and local councilors serve four-year terms. Yet while half of a municipality's council is elected concurrently with the mayor using closed-list proportional representation and a fused vote, the other half are elected two years later in a midterm. We can thus examine incumbency effects in midterms, when mayors are not in the ticket but have strong incentives to improve their party's electoral fortunes in order to increase their political clout in the local council.

With a single exception,⁶ municipal elections have always been held in the same day as provincial – for governor and provincial legislators – and national – for president and national legislators – elections. This applies to both concurrent and midterm elections: both Argentina and the province of Buenos Aires renew their legislatures by halves (or, in the case of the Argentine Senate, by thirds) every two years. This is relevant given the voting technology employed in Argentina: parties print their own ballots,⁷ with ballots for all offices arranged in hierarchical order in the same sheet – literally, "sábana" – of paper.⁸ Parties may present candidates for just a subset of offices and voters are allowed to physically "cut" the sheet in order to vote for different parties to different offices. Nonetheless, the cost of doing so, combined with the visibility of higher-level candidates – notably presidential ones – discourage split-ticket voting (Barnes, Tchintian and Alles 2017).

⁴See Table A2 in the Appendix. We do no have the names of mayoral candidates for previous years.

⁵That is, voters cannot pick a mayor from one party and a list of councilors from another. In 1983 seats were distributed using the d'Hondt formula with no threshold; afterwards, the Hare formula with a large threshold (one Hare quota) was employed. After remainders have been allocated, all surplus seats, if any, go to the most voted party.

⁶In 2003, the presidential election was held in April, whereas elections for all other offices took place in September.

⁷Registration is automatic for all citizens over 18 (16 since 2013), and mandatory voting (for citizens between 18 and 70) means that turnout is pretty high – between 1993 and 2019, average turnout at the municipal level was 80.9%.

⁸The order of the candidacies is as follows: president, national senators, national deputies, provincial governor, provincial senators, provincial deputies, and mayor-councilors.

Since 2011, "simultaneous and mandatory open primaries" (PASO) have been held around two and a half months before the general elections. These primaries need not be competitive – i.e., parties may present a single candidate or list of candidates – but they are mandatory nonetheless: candidates (or lists) that fail to earn at least 1.5% of the vote in the PASO cannot take part in the general election.

Electoral Coordination in the PBA

In this section we document mayors' shifting incentives to mobilize their patronage networks to benefit their co-partisans at the local versus national level. The PBA has 70 seats in the national Chamber of Deputies, roughly 27% of the total. These legislators are elected via a closed-list, province-wide PR system with 35 candidates on the ballot (plus alternates). Given the district's outsized influence on national politics, the top places in the list are typically occupied by allies of the president, the governor, and provincial party leaders, with little input from mayors (Cherny, Figueroa and Scherlis, 2018), weakening mayors' incentives to work for their parties.

Furthermore, while Argentina's two main parties have widely recognizable labels – certainly no less than Brazil's PT (Feierherd 2020; Lupu 2016) –, they are organizationally weak and have shown fluctuating electoral fortunes over time (Gervasoni, 2018). Following the 2001 political crisis, the party system strongly denationalized, with local, provincial, and national politicians enjoying substantial autonomy from each other (Calvo and Escolar, 2005; Suárez-Cao, 2021). This process gradually reversed over the last decade (Degiustti and Scherlis, 2020), but nonetheless local politicians' incentives to dissociate their electoral fate from that of unpopular national candidates remain strong.

The most common way by which mayors separate their electoral fortunes from their parties is by distributing already-cut ballots before election day - i.e., giving voters the ballot for all major presidential (respectively, legislative) candidates alongside the mayor's own ballot, so that voters

may choose among the former but not the latter. Some mayors even produced campaign ads to explain voters how to cut a ballot⁹ and distributed scissors as a "gift" around campaign season.¹⁰ Every time an election approaches, the media is full of stories discussing whether mayors will "work" to help their partisan candidates running for other offices, or perhaps "betray" them – as well as national party leaders' efforts to curb such behavior.¹¹

The 2009 midterm election exemplifies well these intra-party collective action problems. Former president and then First Gentleman Néstor Kirchner decided to head his party's list of candidates for the Chamber of Deputies in order to obtain a province-wide (and thus country-wide) victory that would help him and his wife in the 2011 presidential contest. Yet a dip in popularity after the financial crisis and a major conflict with the country's farmers in 2008 made Kirchner fearful that his copartisan Peronist mayors would not mobilize voters in his favor. To ensure that they would, the Kirchner couple used its congressional majority to move the election date from October to June, and pressured PBA mayors to head the list of local councilors in their districts. While these mayors were not expected to assume as local councilors – they had indicated they would resign before assuming their new post, thus retaining the mayoralty –, appearing in the ballot gave them a stake in the election result, aligning their incentives with Kirchner's. The bet, however, did not pay off: in several municipalities with a Peronist mayor, the PJ's local council lists did much better than the national party list headed by Kirchner. 13

⁹"Instructivo para Votar Cortando Boleta," available in *YouTube*.

¹⁰"Un Intendente Massista Reparte Tijeras para Impulsar el Corte de Boleta," *La Nación*, 7-OCT-2017.

¹¹The establishment of open primaries in 2011 introduced another source of intra-party friction, as candidates who are defeated in the primary may end up supporting other parties in the general election (Clerici, Cruz and Goyburu, 2020). This further reinforces our point that intra-party collaboration cannot be taken for granted.

¹²"The Glass Empties for the Kirchners," *The Economist*, 20-JUN-2009.

¹³"Datos de las 2.15. Dura Derrota de Kirchner," La Nación, 29-JUN-2009.

Two years later, fearing that mayors would distribute the local portion of their parties' ballot with national ballots for opposition parties, ¹⁴ president Cristina Fernández de Kirchner tried to limit the use of cut ballots. The national campaign delayed sending paper ballots to local party branches to prevent mayors from distributing cut ballots in advance of the election. They also made mayors pay for any additional ballots they requested. ¹⁵ This proved unnecessary, as Fernández de Kirchner was reelected in a landslide.

When this is not the case, however, mayors distribute cut ballots to protect themselves from less popular national candidates. Consider the 2015 presidential election, where Fernández de Kirchner was term limited. The PJ's list of candidates for the Chamber of Deputies was dominated by controversial figures (such as Minister of Planning Julio De Vido) and rivals of PJ mayors in key districts, such as Mayra Mendoza from the Quilmes municipality. The candidates for governor and deputy governor favored by President Fernández de Kirchner were also contentious figures: Chief of Staff Aníbal Fernández (no relation), accused by opposition parties of being a member of a drug trafficking network, and Martín Sabbatella, the head of a non-Peronist party allied to the PJ at the national level. After losing a historical election (the PJ had controlled the PBA since 1987), Aníbal Fernández claimed that "some people from my party did whatever they could to ruin me." 16

These practices are not limited to the Peronists. In 2019, as president Mauricio Macri – who governed in alliance with the UCR – was seeking his own reelection, co-partisan mayors were concerned that Macri's unpopular austerity policies would hurt their electoral chances. The media reported that some mayors – as well as the provincial governor, who was much more popular than Macri – proposed to hold provincial (and local) and national elections in different days (see also Suárez-Cao 2021). In the end, all elections were held simultaneously, but several mayors from

¹⁴"El Peronismo Llega Dividido y Cargado de Tensiones," *La Nación*, 14-AUG-2011.

¹⁵"Cortocircuitos en el Plan de Campaña del Kirchnerismo," La Nación, 9-AUG-2011.

¹⁶"El Corte de Boleta Perjudicó a Oficialistas y a Opositores," *La Nación*, 27-OCT-2015.

Macri's party retained their offices even in districts where the president lost by 10 points or more – suggesting the extensive use of cut ballots. ¹⁷

Hypotheses

The previous considerations lead us to formulate the following hypotheses:

- H_1 . Positive incumbency effects should be strongest in local executive elections. Even mayors who do not care about their party at all will worry about their own electoral fortunes. Moreover, the fact that mayors preside over large patronage machines (Weitz-Shapiro, 2012; Oliveros, 2021) gives them the means to affect the outcome at the local level.
- H_2 . Incumbercy effects should also be positive in local midterm elections. Again, mayors can influence the outcome, and they also have an interest in controlling a majority at the local level.
- *H*₃. Incumbency effects should be weakest in presidential and congressional elections. Mayors' capacity to influence these elections is limited, and in any case they sometimes have strong incentives to dissociate their electoral fate from that of unpopular federal candidates.

Data and Research Design

Data. Our sample includes all mayoral and local council elections in the PBA (excluding primaries), as well as the municipal returns for all presidential and lower house elections between 1983 and 2019. Mayoral elections are held every four years, while presidential elections were

¹⁷See, *e.g.*, Leandro Pérez, "Elecciones 2019: Cortes de Boleta y Cinco Batallas por el Poder Territorial en el Gran Buenos Aires," *Clarín*, 26-OCT-2019; and Maías Russo Coroman, "Los Intendentes de Juntos por el Cambio Hicieron Valer el Corte de Boleta y Retuvieron Importantes Distritos del Conurbano," *Infobae*, 28-OCT-2019.

¹⁸The former is from the *Junta Electoral de la Provincia de Buenos Aires*. Data on national elections is from Lupu and Stokes (2009) for 1983-2003, and R's polar package (Ruiz Nicolini 2020) for 2005-2019. The latter only reports

held every six years between 1983 and 1995, and every four since then. All legislative elections are held every two years.

The main issue with the data are party names. The low cost of forming new parties sometimes leads to the proliferation of "mirror" lists – lists that present the exact same candidates under different party labels. More importantly, warring factions inside the PJ sometimes solve their internal differences by presenting different lists on election day, letting voters adjudicate between competing claimants to the party leadership. This means that in 1985, 2005 and 2017 the PJ presented at least two viable lists in most municipalities. Since their votes could not be added up and we could not determine which list was supported by the incumbent mayor, in these years we identify the PJ with the "official" party list, i.e. the one supported by provincial party authorities. ²⁰

Research design. A party's underlying level of electoral support in a district should boost its chances of winning both the current and future elections. We thus follow the literature and employ a regression discontinuity (RD) design, comparing elections in which a party closely won to those in which it lost by a small margin. The identifying assumption is that at the exact point where a party wins or loses the election of interest, counterfactual outcomes should be continuous – i.e., the only differences at the discontinuity should be those affected by the outcome of the election. We fit two separate local-linear regressions above and below the cutoff, using the MSERD-optimal bandwidth and robust confidence intervals and p-values developed by Calonico, Cattaneo and Titiunik (2014).

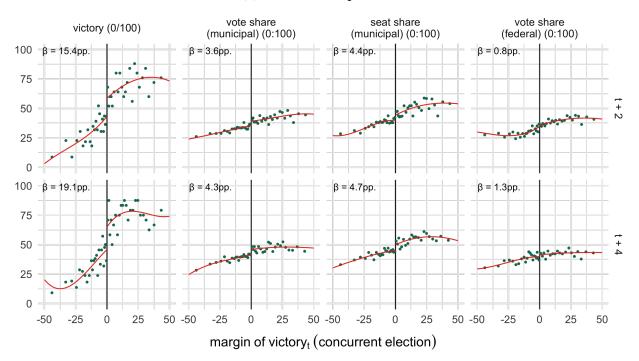
preliminary results. In practice, preliminary and definitive results rarely differ by more than a percentage point. Note that this does not affect our running variable because we only use this data to construct outcome variables.

¹⁹For seat allocation purposes, mirror lists are treated as a single list. We thus add up their votes.

²⁰The official PJ lists in 1985, 2005 and 2017 are thus the *Partido Renovador*, the *Frente Para la Victoria* and *Unidad Ciudadana*, respectively. The UCR is much less problematic. We coded it as part of the *Alianza* and *Cambiemos/Juntos por el Cambio* coalitions in 1997-99 and 2015-19, respectively, and as a single party otherwise. We treat the "radicales K" phenomenon in 2007 as a split against the official party leadership, and thus ignore it.

Variables. Following standard practice in RD studies, we report separate results for each of our two reference parties, the PJ and the UCR. These parties contested almost all mayoral elections between 1983 and 2019, and together won 1,164 out of 1,319 of them (88.2%).²¹ For the analysis, we restrict the sample to mayoral elections in concurrent years²² in which the reference party finished in the first or second place (still the huge majority of observations; see Table A3). The running variable is the party's margin of victory in the municipal election. We look at four outcomes, measured at either the future midterm (t+2) or concurrent (t+4) election:²³

- (1) Winning the election, i.e. being the most voted party at the municipal level. Coded as 0 or 100. At t+2 this confers no special status, but at t+4 it means the party won the mayoral race.
- (2) The party's *vote share* in the municipal race measured in percentage points.
- (3) The *seat share* captured in the municipal race, measured in percentage points. Since municipalities renew half of their council every two years, only half of the council's seats are contested in each election.
- (4) The party's *vote share* in *national* elections, either for national deputies (at t+2) or president (at t+4), measured in percentage points.


Table A3 presents the corresponding descriptive statistics. Figure A1 summarizes the (positive but modest) correlation between all outcomes, and Figure A2 further visualizes the correlation between vote shares in municipal and federal elections. Figure A3 presents the full distribution of all outcome variables by party and election year.

²¹The third largest "party" after them are "*vecinalista*" parties, i.e. purely local forces. These are important in some municipalities, but triumphed in just 35 elections overall.

²²Concurrent years are 1983, 1987, 1991, 1995, 1999, 2003, 2007, 2011, 2015 and 2019. We ignore the handful of mayoral elections held in midterm years, where a mayor was elected to complete an unfinished term.

²³We thus restrict the sample to incumbents elected between 1983 and 2015.

(a) PJ – Full sample

(b) UCR – Full sample

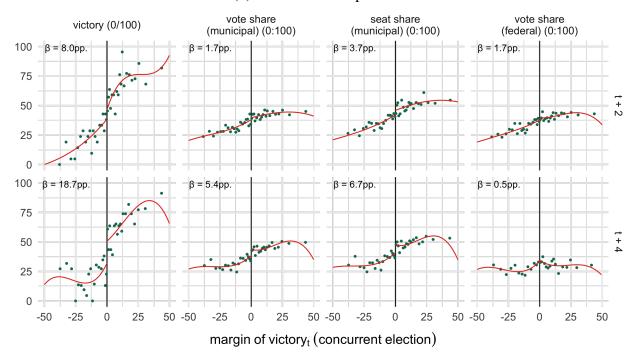


Figure 2: Mimicking variability RD plots with quantile-spaced bins. Red lines indicate the fit of a third-order polynomial estimated separately at each side of the cutoff, using a uniform kernel.

Results

Graphical evidence. Figure 2a presents the distribution of outcome variables and third order polynomial estimates at each side of the discontinuity for municipalities in which PJ came in first or second place in the mayoral race. The upper panel examines the electoral performance of the party in midterm elections; the bottom panel presents the same measures for general election years. Figure 2b repeats the same exercise for the UCR. The "jump" in the lines around the zero threshold suggests that these parties indeed perform better in places where they govern. However, this effect is clearly restricted to local elections; there is no similar jump when looking at federal elections – either legislative midterms or concurrent presidential races.

RD results. These results are confirmed by the RD estimates presented in Table 1. Note that while we are formally estimating a partisan effect – for the PJ in panel (a) and the UCR in panel (b) – the fact that mayors can be reelected indefinitely means that the estimates for the mayoral race combine both the personal and partisan returns to incumbency. For the other categories we estimate a purely partisan effect, since the incumbent mayor is typically not on the ballot (with the partial exception of 2009).

Incumbent parties enjoy a large electoral advantage in their bid for reelection: for the PJ, incumbency translates into an additional 24 percentage points in its probability of reelection. This number is even higher for the UCR: a 29 pp. increase. Fused voting prevents voters from picking a mayor from one party and a list of councilors from another, and thus mayors' personal advantages increase their parties' vote shares by an additional 6 pp. in t+4. This translates into a 6-7 pp. increase in the proportion of seats captured when the party controls the mayoralty, relative to places where the same party is in the opposition.

Table 1: Mayoral incumbency effects in the province of Buenos Aires, 1983-2015

	win	ner		share icipal)		share icipal)	vote share (federal)		
(a) PJ	t+2	t+4	t+2	t+4	t+2	t+4	t+2	t+4	
estimate $(\hat{\tau}_{RD})$	15.54	23.83	4.12	5.77	4.41	7.06	1.31	3.38	
95% CI	[-0.2:31.8]	[9.0:42.6]	[0.5:8.2]	[2.3:10.4]	[-0.4:9.6]	[2.8:12.9]	[-3.3:4.9]	[-0.3:8.8]	
<i>p</i> -value	0.10	0.01	0.06	0.01	0.13	0.01	0.74	0.11	
bwd.	13.33	14.11	13.21	11.29	13.82	12.92	16.40	8.95	
N	306 266	313 275	305 264	260 228	312 272	299 260	334 312	161 146	
control mean	30.24	31.85	32.44	38.15	37.05	42.13	29.71	37.69	
(b) UCR									
estimate $(\hat{\tau}_{RD})$	9.64	29.07	3.54	5.94	3.34	6.48	2.41	-0.04	
95% CI	[-8.8:28.2]	[14.0:51.3]	[-0.2:8.8]	[1.6:11.3]	[-2.1:8.5]	[1.0:12.6]	[-1.3:7.3]	[-8.2:7.3]	
<i>p</i> -value	0.38	0.00	0.10	0.03	0.31	0.05	0.24	0.93	
bwd.	12.90	10.52	10.38	13.91	13.48	15.26	10.94	12.78	
N	213 262	171 213	170 213	219 274	216 273	242 285	170 213	143 159	
control mean	22.22	19.50	30.87	31.51	33.80	33.21	30.70	27.23	

Sharp (conventional) RD estimates, with robust CIs and p-values based on the MSE-optimal bandwidth proposed by Calonico, Cattaneo and Titiunik (2014). The running variable is $margin\ of\ victory_t$. Standard errors are clustered by municipality. Samples are restricted to municipal elections (i) held in concurrent years; and (ii) in which the party finished in the first or second place. Reported number of observations indicate effective sample sizes.

In line with the second hypothesis, local candidates from the incumbent party also benefit during midterm elections – i.e., when the incumbent is not in the ticket but cares about the election outcome. Incumbency adds on average a 4 pp. boost at t+2 for both parties (both effects are statistically significant at the .1 level). We also estimate an increased probability of finishing first and capturing additional seats in the local council. These coefficients are reasonably large: the PJ (UCR) is 16 (10) pp. more likely to come in first in the midterm election, and can expect to capture an additional 4 (3) percentage points of seats in local council elections, though neither of these effects is statistically significant at conventional levels.

The picture is different in federal races. For the PJ, we estimate a 1.3 pp. effect in midterm (legislative) elections and a 3.4 percentage point increase in presidential contests, though in both cases we fail to reject the null hypothesis of no effect at conventional levels. Estimates for the

UCR are similarly small and statistically insignificant. In sum, there is no evidence of a partisan incumbency advantage for local parties on national elections.

Robustness. We run several robustness checks to validate our research design and findings. Figure A8 shows the density of the running variable for each party is continuous at the cutoff, giving credence to the assumption that observations are not deliberately sorting themselves. In line with the continuity assumption, the "balance" tests reported in Table A4 show that close winners and losers are similar in terms of their pre-treatment covariates. We also exploit the fact that finishing first in a midterm election confers no special institutional status to run a placebo test, i.e. the effect of winning the municipal election but not the mayoralty. Table A5 documents that this placebo treatment does not have an effect on future electoral outcomes. Finally, we assessed the robustness of our results to varying specifications, including bandwidth choice (Figure A10) and method of selecting it (Table A6); clustering standard errors by year rather than municipality (Table A9); using a second-order polynomial instead of local-linear regression (Table A8); and using demeaned outcome variables (Table A9). Our results are robust to all these alternative specifications.

Discussion and Conclusion

Exploiting the PBA's institutional setup, we evaluated the partisan returns to incumbency across different types of elections. While our findings are consistent with a large personal advantage, we also show that incumbents sometimes transfer votes to their parties; at the very least, they do not hinder them. This stands in contrast to the "incumbency curse" literature, which has mostly found a negative and statistically significant partisan effect in other developing countries (Uppal, 2009; Klašnja, 2015; Lucardi and Rosas, 2016; Klašnja and Titiunik, 2017; Schiumerini, 2017; Feierherd, 2020). This probably reflect the specifics of the Argentine case. As in other developing countries, PBA mayors rely extensively on providing services and goods to voters in exchange for support. But despite their internal fractures, Argentine parties are much stronger than in Brazil,

where most party labels have little meaning for voters, and mayors who control strong patronage machines often switch allegiances (Novaes, 2018; Feierherd, 2020).

Our results, however, vary for different offices, implying that within-country factors also matter. In the case of local races, estimates for midterm years are smaller and noisier than those reported in concurrent years. This may reflect two potentially complementary factors. On the one hand, the large positive effects in concurrent elections may be driven by purely personal effects, such as voters' positive feelings towards individual mayors. Even if mayors seek to enlarge their majority in the local council, their capacity to mobilize support may be diminished when they do not appear in the ticket. The absence of coattail effects from executive elections may also make midterm elections more competitive overall (Jones, 1997; Samuels, 2000), making it harder for mayors to help their copartisans.

Regarding the null results in federal elections, not only are mayors unlikely to affect the election outcome, but we also showed that sometimes they want to actively dissociate themselves from unpopular upper-level copartisans. Critically, these copartisans sometimes have the means – in the form of (promises of) financial transfers – to induce mayor to mobilize; and if such incumbents are popular, mayors will want to ride on their coattails anyway. This suggests that incumbency effects for upper-level elections should vary depending on whether the mayor's party controls the presidency and/or the president is popular. In Tables A10 and A11 in the appendix we take a preliminary look at these possibilities. The first two panels of Table A10 show that the PJ does especially well at all levels when a copartisan controls the presidency – basically, all elections between 1991 and 2015, with the single exception of the 2001 midterm (see Table A1) – but nonetheless its mayors still enjoy a large advantage in *local* elections in general-election years when the party is in the opposition at the national level. The UCR, in contrast, does badly at all levels when a copartisan controls the presidency (panel c) but better during PJ national administrations (panel d).

A possible explanation is that UCR presidents were generally unpopular (see Table A1), and the only concurrent election in which they were not (1987) coincided with a Peronist victory in the

gubernatorial race. Small sample sizes preclude us from evaluating this possibility for the UCR directly, but we can do it for the PJ. Table A11 splits the copartisan PJ sample depending on whether the president's net approval rating (Carlin et al., 2019) in the quarter before the election was above or below the sample median. Interestingly, we find that incumbency effects in local races are similar regardless of the president's popularity, but the effect on federal elections is substantially larger – 6.8 and 8.5 pp. in congressional and presidential races, though only the latter is statistically significant – when the president is popular than when (s)he is unpopular – 4.7 and 1.9 pp. respectively. The small sample sizes involved and the fact that several of these estimates are statistically insignificant means that these results should be taken with a grain of salt.

We conclude by highlighting some implications of our findings for our understanding of Argentine politics. Mayors in the PBA – especially Peronist mayors in the *Conurbano* – are referred to as "Barons" for their political clout, sustained by their high reelection rates. Some of them, like Manuel Quindimil (1983-2007) from Lanús or Hugo Curto (1991-2015) from Tres de Febrero, were or have been in power for decades; others, like Juan José Mussi (1987-1994; 2003-2010; and 2019-) from Berazategui alternated in office with their offspring (Juan Patricio Mussi, 2011-2019). Indeed, Figure A5 in the appendix shows that municipal elections in the *Conurbano* – and especially the *tercera sección*, which is often identified as a Peronist bastion – are much less competitive than in the rest of the province. That said, the number of competitive elections in the *Conurbano* is not trivial. While some Peronist Barons may possibly benefit from winning lopsided elections in heavily Peronist districts – effects which we cannot estimate causally²⁴ – our findings also suggest that part of their electoral influence stems from being *incumbents* rather than from simply being *Peronists*, and that both major parties profit from incumbency.

-

²⁴RD designs estimate a local average treatment effect, or LATE, for observations at the RD cutoff.

References

- Ascencio, Sergio J. 2021. "Nomination Rules and the Calculus of Mobilization: Theory and Evidence from Mexico." Unpublished manuscript.
- Barnes, Tiffany D., Carolina Tchintian and Santiago Alles. 2017. "Assessing Ballot Structure and Split Ticket Voting: Evidence from a Quasi-Experiment." *The Journal of Politics* 79(2):439–456.
- Battocchio, Matias. 2018. "La Ventaja del Oficialismo en las Elecciones Municipales de la Provincia de Buenos Aires." *Económica* 64:133–171.
- Broockman, David E. 2009. "Do Congressional Candidates Have Reverse Coattails? Evidence from a Regression Discontinuity Design." *Political Analysis* 17(4):418.
- Calonico, Sebastian, Matías D. Cattaneo and Rocío Titiunik. 2014. "Robust Nonparametric Confidence Intervals for Regression-Discontinuity Designs." *Econometrica* 82(6):2295–2326.
- Calvo, Ernesto and Marcelo Escolar. 2005. La Nueva Política de Partidos en la Argentina. Crisis Política, Realineamientos Partidarios y Reforma Electoral. Buenos Aires: PENT-Prometeo.
- Calvo, Ernesto and Maria Victoria Murillo. 2013. "When Parties Meet Voters: Assessing Political Linkages through Partisan Networks and Distributive Expectations in Argentina and Chile." *Comparative Political Studies* 46(7):851–882.
- Camp, Edwin. 2017. "Cultivating effective brokers: A party leader's dilemma." *British Journal of Political Science* 47(3):521–543.
- Carlin, Ryan E., Jonathan Hartlyn, Timothy Hellwig, Gregory J. Love, Cecilia Martínez-Gallardo and Matthew M. Singer. 2019. "Executive Approval Database 2.0.".
 - URL: http://www.executiveapproval.org/
- Cattaneo, Matías D., Brigham R. Frandsen and Rocío Titiunik. 2015. "Randomization Inference in the Regression Discontinuity Design: An Application to Party Advantages in the U.S. Senate." *Journal of Causal Inference* 3(1):1–24.
- Cattaneo, Matias D., Michael Jansson and Xinwei Ma. 2020. "Simple Local Polynomial Density Estimators." *Journal of the American Statistical Association* 115(531):1449–1455.
- Cherny, Nicolás, Valentín Figueroa and Gerardo Scherlis. 2018. "Quién Nomina a los Legisladores? La Conformación de las Listas de Candidatos para la Cámara de Diputados en Argentina." *Revista SAAP* 12(2):215–248.
- Cirone, Alexandra, Gary W. Cox and Jon H. Fiva. 2021. "Seniority-Based Nominations and Political Careers." *American Political Science Review* 115(1):234–251.
- Clerici, Paula, Facundo Cruz and Lara Goyburu. 2020. "¿ Fuego amigo? El desgaste de las primarias competitivas en la provincia de Buenos Aires." *Revista de ciencia política (Santiago)* 40(1):1–26.
- Cox, Gary W., Jon H. Fiva, Daniel M. Smith and Rune J. Sørensen. forthcoming. "Moral Hazard in Electoral Teams: List Rank and Campaign Effort." *Journal of Public Economics* .
- Dahlgaard, Jens Olav. 2016. "You Just Made It: Individual Incumbency Advantage under Proportional Representation." *Electoral Studies* 44:319–328.
- Degiustti, Danilo and Gerardo Scherlis. 2020. "Desandando Caminos. Reequilibrio de Fuerzas y Alternancia en el Sistema Partidario Argentino, 2015-2019." *Colombia Internacional* (103):139–169.
- Engstrom, Erik J. and Samuel Kernell. 2005. "Manufactured Responsiveness: The Impact of State Electoral Laws on Unified Party Control of the Presidency and House of Representatives, 1840-1940." *American Journal of Political Science* 49(3):531–549.
- Erikson, Robert S., Olle Folke and James M. Snyder. 2015. "A Gubernatorial Helping Hand? How Governors Affect Presidential Elections." *The Journal of Politics* 77(2):491–504.

- Erikson, Robert S. and Rocío Titiunik. 2015. "Using Regression Discontinuity to Uncover the Personal Incumbency Advantage." *Quarterly Journal of Political Science* 10(1):101–119.
- Feierherd, Germán. 2020. "How Mayors Hurt Their Presidential Ticket: Party Brands and Incumbency Spillovers in Brazil." *The Journal of Politics* 82(1):195–210.
- Folke, Olle and James M. Snyder. 2012. "Gubernatorial Midterm Slumps." *American Journal of Political Science* 56(4):931–948.
- Fowler, Anthony and Andrew B. Hall. 2014. "Disentangling the Personal and Partisan Incumbency Advantages: Evidence from Close Elections and Term Limits." *Quarterly Journal of Political Science* 9(4):501–531.
- Gervasoni, Carlos. 2018. Argentina's Declining Party System: Fragmentation, Denationalization, Factionalization, Personalization, and Increasing Fluidity. In *Party Systems in Latin America: Institutionalization, Decay, and Collapse*, ed. Scott Mainwaring. Cambridge: Cambridge University Press pp. 255–290.
- Gibson, Edward L. 2005. "Boundary Control: Subnational Authoritarianism in Democratic Countries." *World Politics* 58(1):101–132.
- Hollyer, James R, Marko Klašnja and Rocío Titiunik. forthcoming. "Parties as Disciplinarians: Charisma and Commitment Problems in Programmatic Campaigning." *American Journal of Political Science*.
- Jones, Mark P. 1997. "Federalism and the Number of Parties in Argentine Congressional Elections." *The Journal of Politics* 59(2):538–549.
- Klašnja, Marko. 2015. "Corruption and the Incumbency Disadvantage: Theory and Evidence." *The Journal of Politics* 77(4):928–942.
- Klašnja, Marko and Rocío Titiunik. 2017. "The Incumbency Curse: Weak Parties, Term Limits, and Unfulfilled Accountability." *American Political Science Review* 111(1):129–148.
- Kotakorpi, Kaisa, Panu Poutvaara and Marko Terviö. 2017. "Returns to Office in National and Local Politics: A Bootstrap Method and Evidence from Finland." *The Journal of Law, Economics, & Organization* 33(3):413–442.
- Lee, David S. 2008. "Randomized Experiments From Non-Random Selection in U.S. House Elections." *Journal of Econometrics* 142(2):675–697.
- Lopes da Fonseca, Mariana. 2017. "Identifying the Source of Incumbency Advantage through a Constitutional Reform." *American Journal of Political Science* 61(3):657–670.
- Lucardi, Adrián and Guillermo Rosas. 2016. "Is the Incumbent Curse the Incumbent's Fault? Strategic Behavior and Negative Incumbency Effects in Young Democracies." *Electoral Studies* 44:66–75.
- Lupu, Noam. 2016. Building Party Brands in Argentina and Brazil. In *Challenges of Party-Building in Latin America*, ed. Jorge Domínguez, Steven Levitsky, Brandon Van Dyck and James Loxtonin. Cambridge University Press pp. 76–99.
- Lupu, Noam and Susan C. Stokes. 2009. "The Social Bases of Political Parties in Argentina, 1912–2003." *Latin American Research Review* 44(1):58–87.
- Micozzi, Juan Pablo and Adrián Lucardi. 2021. "How Valuable Is a Legislative Seat? Long-Term Incumbency Effects in the Argentine Chamber of Deputies." *Political Science Research and Methods* 9(2):414–429.
- Novaes, Lucas M. 2018. "Disloyal Brokers and Weak Parties." American Journal of Political Science 62(1):84–98.
- Núñez, Lucas. 2018. "Do Clientelistic Machines Affect Electoral Outcomes? Mayoral Incumbency as a Proxy for Machine Prowess." *Electoral Studies* 55:109–119.
- Oliveros, Virginia. 2021. Patronage at Work: Public Jobs and Political Services in Argentina. Cambridge University Press.
- Olson, Michael P. 2020. "The Direct Primary and the Incumbency Advantage in the US House of Representatives." *Quarterly Journal of Political Science* 15(4):483–506.

- Rau, Eli, Radha Sarkar and Susan Stokes. N.d. Parties and Mobilization in Referendums. Unpublished typescript, Yale University.
- Rosas, Guillermo and Adrián Lucardi. 2020. "Jumping Ship or Jumping on the Bandwagon: When Do Local Politicians Support National Candidates?" *Political Science Research and Methods* 8(1):60–74.
- Ruiz Nicolini, Juan Pablo. 2020. "polAr: Argentina Political Analysis." R Package Version 0.2.0 (dev). URL: https://electorarg.github.io/polAr/
- Samuels, David J. 2000. "Concurrent Elections, Discordant Results: Presidentialism, Federalism, and Governance in Brazil." *Comparative Politics* 33(1):1–20.
- Schiumerini, Luis. 2017. "Imperfect evaluations and incumbency effects." Working Paper, Kellogg Institute For International Studies.
- Schiumerini, Luis and María Page. 2012. "El Efecto "Cancha Inclinada": Ventajas del Oficialismo en la Política de las Provincias Argentinas." CIPPEC, Documento de Políticas Públicas / Análisis #115.
- Stokes, Susan C., Thad Dunning, Marcelo Nazareno and Valeria Brusco. 2013. *Brokers, Voters, and Clientelism: The Puzzle of Distributive Politics*. Cambridge: Cambridge University Press.
- Suárez-Cao, Julieta. 2021. "Squaring the Circle: The Consolidation of Incumbency Advantage in the Argentine Provincial Elections of 2019." *Regional & Federal Studies* 31(3):313–335.
- Uppal, Yogesh. 2009. "The Disadvantaged Incumbents: Estimating Incumbency Effects in Indian State Legislatures." *Public Choice* 138(1-2):9–27.
- Weitz-Shapiro, Rebecca. 2012. "What Wins Votes: Why Some Politicians Opt Out of Clientelism." *American Journal of Political Science* 56(3):568–583.

Online Appendix

"When the Partisan Becomes Personal: Mayoral Incumbency Effects in Buenos Aires, 1983-2019" (for online publication only)

- (1) Section A presents the descriptive statistics and some additional plots.
- (2) Section B presents the balance checks and placebo tests.
- (3) Section C reports additional results and robustness checks.

A Descriptive statistics

Copartisanship and approval. Table A1 presents the partisan identity of the president and governor for each election between 1985 and 2019, as well as the president's net approval % – defined as the difference between the president's positive approval % minus its negative (dis)approval (Carlin et al. 2019) – in the quarter before the election.

Mayoral re-election, 2011 and 2015 cohorts. Table A2 presents the re-running reelection rates for PJ and UCR mayors elected in 2011 and 2015.

Descriptive statistics. Table A3 presents the descriptive statistics for the main variables of interest during 1983-2017. We distinguish between four samples: (i) PJ-concurrent elections; (ii) UCR-concurrent elections; (iii) PJ-midterm elections; and (iv) UCR-midterm elections. We restrict the samples to municipal elections in which the PJ (respectively, the UCR) finished first or second.

Correlation between outcomes. Figure A1 presents the correlation between outcomes for each of the four samples listed in Table A3. Figure A2 visualizes in more detail the relationship between vote shares in municipal and federal elections.

Temporal and geographical distribution. Figure A3 presents the evolution of the eight outcomes of interest for both the PJ and UCR, between 1983 and 2019. The maps in Figure A4 display the average vote share in federal elections (1983-2019) for the PJ and the UCR in both the *Conurbano* and the rest of the province. Figure A5 display both the average values and the full distribution of the running variable in each of Buenos Aires's eight electoral *secciones*.

Additional RD plots. Figures A6 and A7 present the full sample RD plots (i) for the demeaned version of the outcome variables (i.e., net of municipality and year fixed effects); and (ii) for the placebo sample in which treatment is defined as winning a midterm election.

Table A1: Copartisanship and presidential approval, 1985-2019

outcome measured in		president's pa	rty governor's p	arty net approval %
1985	midterm	UCR	UCR	30.2
1987	concurrent	UCR	UCR	23.7
1989	midterm	UCR	PJ	-6.3
1991	concurrent	PJ	PJ	3.9
1993	midterm	PJ	PJ	-2.3
1995	concurrent	PJ	PJ	1.9
1997	midterm	PJ	PJ	-6.5
1999	concurrent	PJ	PJ	-15.0
2001	midterm	UCR	PJ	-14.2
2003	concurrent	PJ	PJ	26.5
2005	midterm	PJ	PJ	32.9
2007	concurrent	PJ	PJ	22.0
2009	midterm	PJ	PJ	-10.8
2011	concurrent	PJ	PJ	28.7
2013	midterm	PJ	PJ	11.0
2015	concurrent	PJ	PJ	17.3
2017	midterm	UCR	UCR	1.2
2019	concurrent	UCR	UCR	

Partisan affiliation of Argentina's president and the governor of Buenos Aires at the time of each municipal election between 1985 and 2019. Net approval – defined as positive approval % minus negative (dis)approval % – is taken from Carlin et al. (2019). Values in **black** indicate "High" approval – a value above 4.40%, the median value for the 1983.Q4-2018.Q2 period –, while values in **red** indicate presidents with "Low" approval.

Table A2: Re-running and re-election rates PBA mayors, 2011 & 2015 cohorts

		Re-runs		Wins		I	Loses
Cohort	Sample size*	N	%	N	%	N	%
2011-2015	115	78	67.8	46	59.0	32	41.0
2015-2019	120	97	80.8	83	85.6	14	14.4
Total	235	175	74.5	129	73.7	46	26.3

^{*} Data on 20 and 15 municipalities is missing, respectively, because the municipality was controlled by a porty other than the PJ or the UCR.

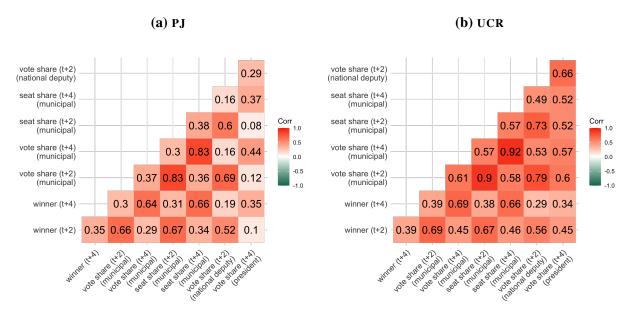


Figure A1: Correlation between outcome variables by party, 1983-2017. The only correlation with a p-value larger than 0.01 is the one between seat share $(municipal)_{t+2}$ and vote share $(president)_{t+4}$ in panel (a) (p = 0.018).

Table A3: Descriptive statistics

	PJ (N = 1097)					UCR (N = 872)				
		(N = 10	197)				(N = 8)	12)	
(a) Concurrent election years	N	mean	sd.	min	max	N	mean	sd.	min	max
$winner_t (0/100)$	1097	54.79	49.79	0.00	100.00	872	49.43	50.03	0.00	100.00
margin of victory _t (-100:100)	1097	4.05	20.10	-52.54	67.19	872	-1.83	18.74	-60.85	52.54
vote share $(municipal)_t$ (0:100)	1097	43.29	10.77	11.71	77.54	872	41.81	11.31	7.83	74.62
$winner_{t+2} (0/100)$		51.69			100.00	872	44.27	49.70		100.00
$winner_{t+4} (0/100)$	1096	55.29	49.74	0.00	100.00	872	42.09	49.40	0.00	100.00
vote share $(municipal)_{t+2}$ (0:100)	1097	37.65	12.54	0.21	66.26	872	36.47	12.73	2.95	67.02
vote share $(municipal)_{t+4}$ (0:100)	1096	43.10	12.52	2.15	100.00	872	38.30	15.45	1.15	74.62
seat share $(municipal)_{t+2}$ (0:100)	1097	44.38	18.45	0.00	100.00	872	41.84	17.46	0.00	100.00
seat share $(municipal)_{t+4}$ (0:100)		48.74			100.00		41.18			100.00
vote share (national deputy) $_{t+2}$ (0:100)		34.94		0.52	65.22		35.86		4.32	65.53
vote share (president) $_{t+4}$ (0:100)	855	40.58	11.11	10.94	70.37	598	28.88	17.25	0.53	74.88
copartisan president $_{t+2}$ (0/1)	1097	0.56	0.50	0.00	1.00	872	0.55	0.50	0.00	1.00
copartisan president _{t+4} (0/1)	1097	0.78	0.41	0.00	1.00	872	0.27	0.44	0.00	1.00
$popular\ copartisan\ president_{t+2}\ (0/1)$	614	0.42	0.49	0.00	1.00	481	0.25	0.43	0.00	1.00
$popular\ copartisan\ president_{t+4}\ (0/1)$	860	0.57	0.50	0.00	1.00	119	1.00	0.00	1.00	1.00
(b) Midterm election years		(N = 10	36)		(N = 906)				
winner _t (0/100)	1036	57.14	49.51	0.00	100.00	906	48.12	49.99	0.00	100.00
margin of victory _t (-100:100)	1036	3.45	18.34	-46.70	57.42	906	-1.14	18.06	-57.42	46.70
vote share $(municipal)_t$ (0:100)	1036	39.68	10.66	15.30	66.26	906	38.22	10.91	5.97	67.02
$winner_{t+2} (0/100)$	1035	56.33	49.62	0.00	100.00	906	41.06	49.22	0.00	100.00
$winner_{t+4} (0/100)$	931	57.36	49.48	0.00	100.00	774	33.20	47.13	0.00	100.00
vote share $(municipal)_{t+2}$ (0:100)	1035	43.72	12.11	2.15	100.00	906	38.85	14.51	1.46	74.62
vote share $(municipal)_{t+4}$ (0:100)	931	38.88	12.24	3.32	73.14	774	33.75	14.00	2.04	67.02
seat share $(municipal)_{t+2}$ (0:100)	1035	49.72	16.52	0.00	100.00		41.87		0.00	100.00
seat share $(municipal)_{t+4}$ (0:100)	931	46.05	18.60	0.00	100.00	774	38.07	18.45	0.00	100.00
vote share (national deputy) $_{t+2}$ (0:100)		43.46	9.25	6.22	75.04	865	34.22	13.13	0.95	66.76
vote share $(president)_{t+4}$ (0:100)	94	46.36	5.22	33.85	59.14	117	37.74	5.97	22.96	52.81
$copartisan\ president_{t+2}\ (0/1)$	1036	0.80	0.40	0.00	1.00	906	0.28	0.45	0.00	1.00
$copartisan\ president_{t+4}\ (0/1)$	1036	0.67	0.47	0.00	1.00	906	0.35	0.48	0.00	1.00
$popular\ copartisan\ president_{t+2}\ (0/1)$	833	0.54	0.50	0.00	1.00	124	1.00	0.00	1.00	1.00
<i>popular copartisan president</i> _{$t+4$} (0/1)	594	0.39	0.49	0.00	1.00	314	0.00	0.00	0.00	0.00

Period covered: 1983-2017. All samples are restricted to municipal elections in which the PJ (respectively, the UCR) finished in either the first or second place. The *popular copartisan president* variables are restricted to observations where there is a copartisan president in the first place. Full sample sizes are: for the PJ, 1179 and 1178 in concurrent and midterm elections, respectively; and for the UCR, 1139 and 1150, respectively.

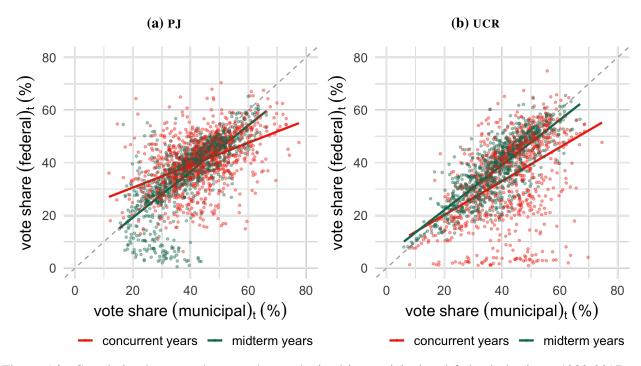


Figure A2: Correlation between the vote shares obtained in municipal and federal elections, 1983-2017. Solid and broken lines indicate regression lines and the 45 degree line, respectively. All regression lines are statistically significant at the 0.01 percent level.

Figure A3: Evolution of outcomes over time, 1983-2019. Lines report average values by party, while points indicate individual observations. Gray vertical lines indicate concurrent (as opposed to midterm) elections. In panel (d), these (as well as the data) correspond to presidential elections.

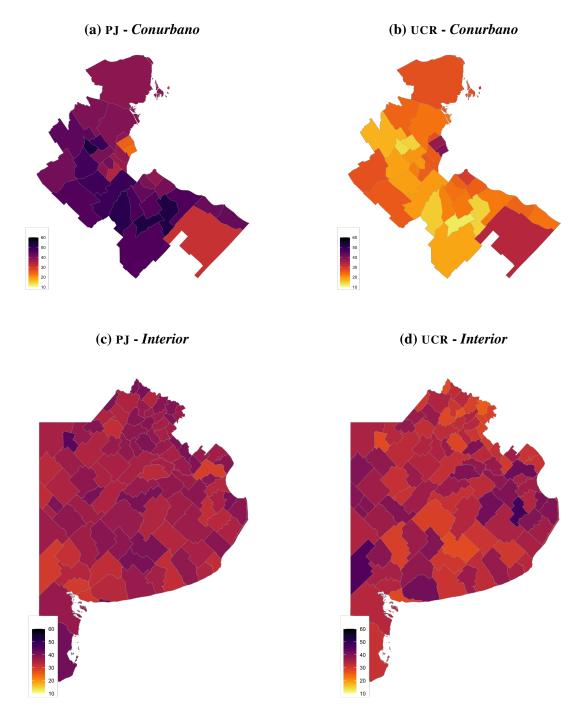


Figure A4: Average vote share in federal elections, 1983-2019. The boundaries of the *Conurbano* have changed over time. The top panels graphs the 33 municipalities mentioned in provincial law #13473 of 2006.

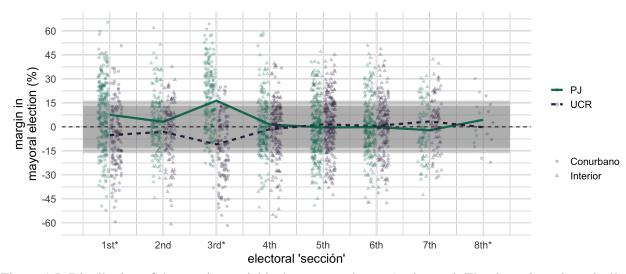
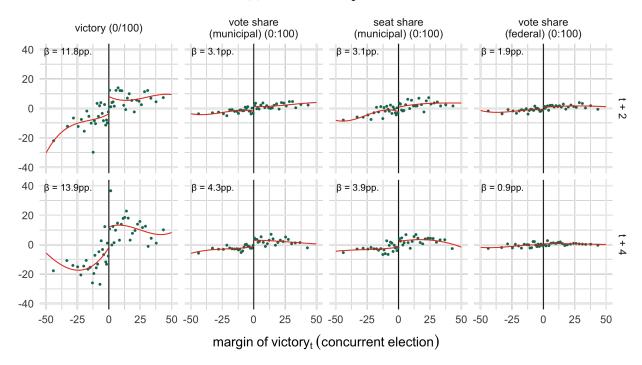



Figure A5: Distribution of the running variable, by party and *sección* electoral. The *Conurbano* is typically identified as the union of the first, third and eighth *secciones*. Lines report average values by party, while points indicate individual observations. The outer gray area indicates the maximum bandwidth reported in Table 1, while the inner gray area indicates the median bandwidth value in that table.

(a) PJ – Full sample

(b) UCR – Full sample

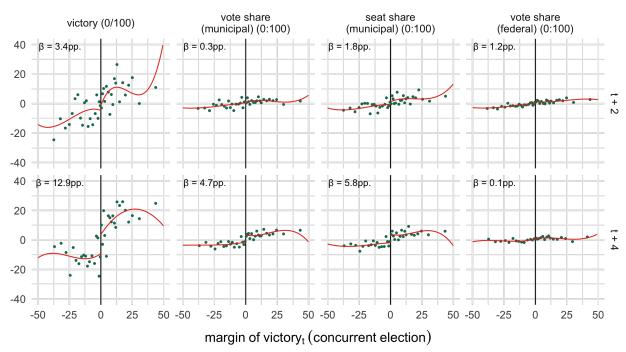
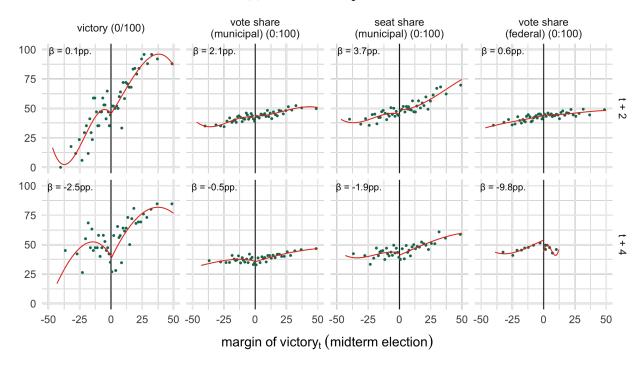


Figure A6: Mimicking variability RD plots with quantile-spaced bins – Demeaned outcomes. The labels at the top indicate the outcome variables, net of municipality and year fixed effects; those at the right give the date in which they were measured. Red lines indicate the fit of a third-order polynomial regression estimated separately at each side of the cutoff, using a uniform kernel.


B Balance checks and placebos

Density test. Figure A8 reports the density tests for the running variable at the threshold proposed by Cattaneo, Jansson and Ma (2020).

Balance checks. The mimicking-variance quantile-spaced RD plots displayed in Figure A9 and the RD estimates reported in Table A4 show that there is no incumbency effect on the *lagged* version of the outcome variables (i.e., on the outcomes variables measured at either t-2 or t-4).

Placebo: midterm elections. Table A5 replicates the results reported in the body of the paper, but estimated with data from *midterm* rather than concurrent elections. Thus, the "treatment" is no longer municipal incumbency but rather finishing first in the midterm, which confers no special institutional status.

(a) PJ – Full sample

(b) UCR – Full sample

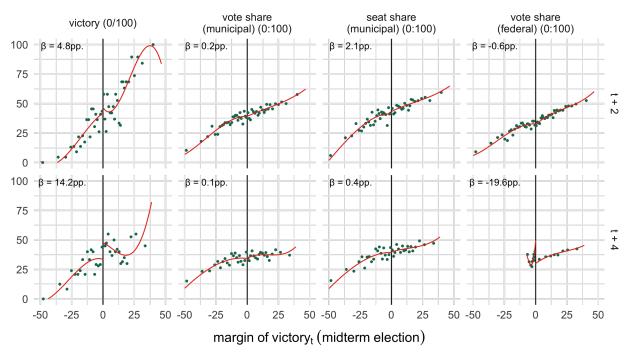


Figure A7: Mimicking variability RD plots with quantile-spaced bins – Midterm placebo. The labels at the top indicate the outcome variables; those at the right give the date in which they were measured. Red lines indicate the fit of a third-order polynomial regression estimated separately at each side of the cutoff, using a uniform kernel.

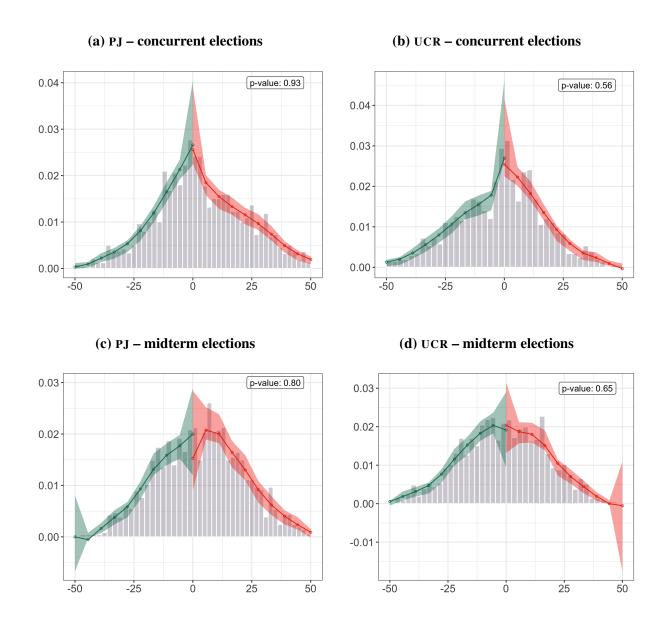
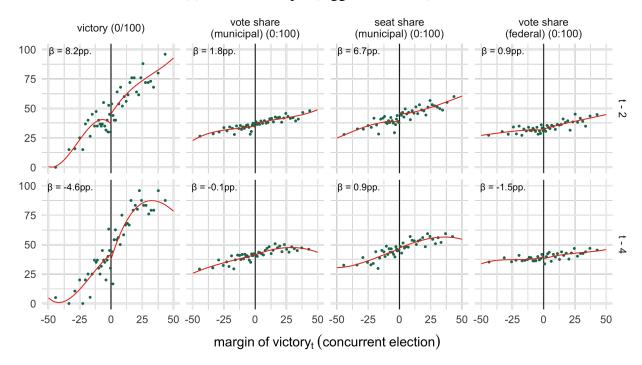



Figure A8: Cattaneo, Jansson and Ma's (2020) test of the density of the running variable at the threshold.

(a) PJ – Full sample (lagged outcomes)

(b) UCR – Full sample (lagged outcomes)

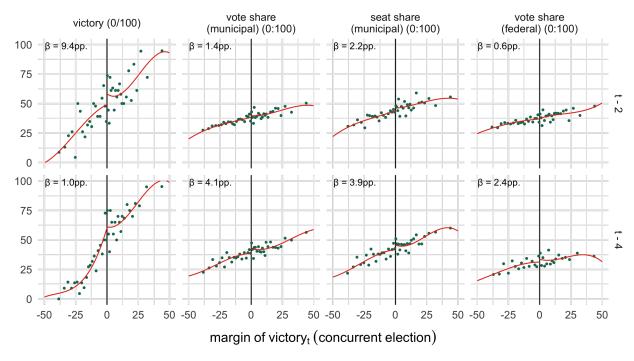


Figure A9: Mimicking variability RD plots with quantile-spaced bins – Lagged outcomes. The labels at the top indicate the outcome variables; those at the right give the (pre-treatment) date in which they were measured. Red lines indicate the fit of a third-order polynomial regression estimated separately at each side of the cutoff, using a uniform kernel.

Table A4: Balance checks: Mayoral incumbency effects on lagged outcomes, 1987-2019

	winner			vote share (municipal)		seat share (municipal)		share eral)
(a) PJ	t-2	t-4	t-2	t-4	t-2	t-4	t-2	t-4
estimate $(\hat{\tau}_{RD})$	6.74	-2.65	2.12	-0.55	6.53	0.34	0.53	-3.39
95% CI	[-7.7:22.7]	[-16.9:11.1]	[-1.8:6.2]	[-3.5:2.1]	[1.8:12.4]	[-4.0:4.8]	[-4.6:5.4]	[-7.9:-0.3]
<i>p</i> -value	0.41	0.73	0.37	0.69	0.03	0.89	0.89	0.07
bwd.	16.79	16.04	12.94	12.84	17.06	11.38	14.18	10.57
N	326 314	314 303	283 253	281 252	330 320	251 226	292 269	187 149
control mean	33.47	27.39	32.98	37.71	37.23	41.16	31.25	37.78
(b) UCR								
estimate $(\hat{\tau}_{RD})$	8.52	2.65	1.94	2.82	2.58	1.80	1.77	1.39
95% CI	[-4.8:25.4]	[-11.9:19.0]	[-1.4:6.4]	[-2.2:9.1]	[-2.9:8.6]	[-4.1:9.0]	[-1.8:6.7]	[-6.3:10.3]
<i>p</i> -value	0.24	0.70	0.27	0.30	0.41	0.53	0.33	0.69
bwd.	16.42	16.16	10.75	12.04	11.09	11.94	10.22	11.81
N	250 272	249 271	171 202	188 227	176 208	187 226	162 189	130 173
control mean	32.85	25.10	33.35	33.16	37.58	34.99	33.96	27.34

Sharp (conventional) RD estimates, with robust CIs and p-values based on the MSE-optimal bandwidth proposed by Calonico, Cattaneo and Titiunik (2014). The running variable is $margin\ of\ victory_t$. For each reference party, the sample is restricted to municipal elections (i) held in concurrent years; and (ii) in which the party finished in the first or second place. To calculate the estimates, we clustered observations by municipality and fitted a separate local linear regression at both sides of the threshold, using a triangular kernel. Reported number of observations corresponds to the *effective* sample size.

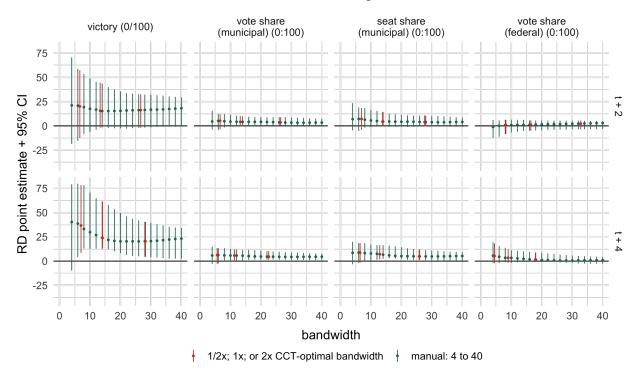
Table A5: Placebo tests: "Incumbency" effect in midterm elections, 1985-2013

	winner		vote share (municipal)		seat share (municipal)		vote s (fede	
(a) PJ	t+2	t+4	t+2	t+4	t+2	t+4	t+2	t+4
estimate $(\hat{\tau}_{RD})$	6.28	-5.89	1.09	-1.33	3.54	-3.02	2.45	-0.70
95% CI	[-10.9:31.5]	[-31.5:21.0]	[-3.7:7.0]	[-8.9:6.4]	[-1.2:9.7]	[-14.1:9.3]	[-4.3:11.7]	[-7.1:5.8]
<i>p</i> -value	0.39	0.72	0.57	0.77	0.17	0.72	0.37	0.86
bwd.	11.22	13.02	14.00	13.17	11.94	16.81	14.18	11.80
N	208 243	206 261	246 300	208 262	219 255	268 320	194 236	195 233
control mean	36.71	47.96	40.47	36.91	43.69	42.45	39.35	35.93
(b) UCR								
estimate $(\hat{\tau}_{RD})$	4.89	0.15	0.16	-0.28	2.25	0.73	-2.09	-1.32
95% CI	[-16.3:33.5]	[-36.6:22.9]	[-5.6:7.2]	[-9.7:6.6]	[-3.8:10.2]	[-10.9:10.6]	[-17.9:10.3]	[-11.4:7.0]
<i>p</i> -value	0.54	0.69	0.83	0.72	0.42	0.98	0.61	0.62
bwd.	13.26	8.03	14.59	11.14	16.81	12.16	12.87	17.48
N	239 224	137 116	257 249	190 166	286 289	205 176	169 156	262 239
control mean	24.89	26.20	32.87	31.23	34.95	34.44	23.19	30.64

Sharp (conventional) RD estimates, with robust CIs and p-values based on the MSE-optimal bandwidth proposed by Calonico, Cattaneo and Titiunik (2014). All outcome variables were demeaned of municipality and year fixed effects. The running variable is $margin\ of\ victory_t$. For each reference party, the sample is restricted to municipal elections (i) held in midterm years; and (ii) in which the party finished in the first or second place. To calculate the estimates, we clustered observations by municipality and fitted a separate local linear regression at both sides of the threshold, using a triangular kernel. Reported number of observations corresponds to the *effective* sample size.

C Robustness checks

Sensitivity to bandwidth choice. Figure A10 shows that the findings reported in Table 1 are not overly sensitive to bandwidth choice. Except in the case of very small bandwidths – with the accompanying reduction in the number of observations –, the results remain broadly similar.


CER-optimal bandwidth. Table A6 replicates the results reported in the body of the paper but employing CER-optimal instead of MSE-optimal bandwidths.

Clustering standard errors by year. Table A7 replicates the results reported in the body of the paper but clustering the standard errors by year rather than by municipality. Note that since the RD estimator minimizes the bias-variance trade-off, this alters not only the confidence intervals, but the point estimates as well (Calonico, Cattaneo and Titiunik 2014).

Second-order polynomials. Table A8 replicates the results reported in the body of the paper but employing a second-order polynomial instead of a local linear regression.

Demeaned outcomes. Table A9 replicates the results reported in the body of the paper, but demeaning the outcome variables out of municipality and year fixed effects.

(a) PJ – Full sample

(b) UCR – Full sample

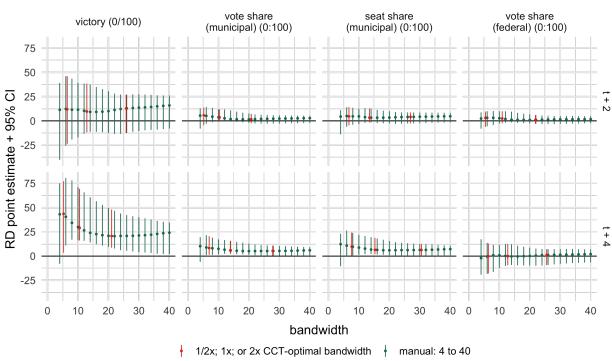


Figure A10: Sharp (conventional) RD estimates, with robust 95% CIs. The running variable is margin of $victory_t$. For each reference party, the sample is restricted to municipal elections (i) held in concurrent years; and (ii) in which the party finished in the first or second place. To calculate the estimates, we clustered observations by municipality and fitted a separate local linear regression at both sides of the threshold, using a triangular kernel. The CCT-optimal bandwidth is the (MSE-optimal) bandwidth reported in Table 1.

Table A6: Robustness checks (I): CER-optimal bandwidths

	winner		vote share (municipal)		seat share (municipal)			share 'eral)
(a) PJ	t+2	t+4	t+2	t+4	t+2	t+4	t+2	t+4
estimate $(\hat{\tau}_{RD})$	15.39	25.96	4.21	5.76	4.45	7.83	1.43	3.16
95% CI	[-18.5:48.7]	[5.3:52.4]	[-3.4:12.5]	[1.0:11.8]	[-4.7:15.0]	[2.5:15.0]	[-9.8:11.2]	[-4.4:12.9]
<i>p</i> -value	0.41	0.02	0.30	0.03	0.35	0.01	0.90	0.36
bwd.	18.61	12.54	17.27	10.83	15.14	10.59	18.22	10.68
N	368 342	291 250	352 331	251 220	323 296	247 214	356 333	181 168
control mean	30.24	31.85	32.44	38.15	37.05	42.13	29.71	37.69
(b) UCR								
estimate $(\hat{\tau}_{RD})$	9.49	29.78	4.08	6.16	3.19	7.12	1.90	-0.10
95% CI	[-26.4:46.4]	[10.0:55.9]	[-1.4:11.9]	[-0.0:13.8]	[-4.8:11.0]	[0.3:15.0]	[-5.2:10.8]	[-19.9:17.6]
<i>p</i> -value	0.61	0.01	0.13	0.05	0.46	0.05	0.50	0.90
bwd.	13.29	10.14	8.72	13.23	14.50	13.14	12.16	17.73
N	215 270	166 207	147 177	215 269	230 278	214 268	194 243	190 186
control mean	22.22	19.50	30.87	31.51	33.80	33.21	30.70	27.23

Sharp (conventional) RD estimates, with robust CIs and p-values based on the CER-optimal bandwidth proposed by Calonico, Cattaneo and Titiunik (2014). The running variable is $margin\ of\ victory_t$. For each reference party, the sample is restricted to municipal elections (i) held in concurrent years; and (ii) in which the party finished in the first or second place. To calculate the estimates, we clustered observations by municipality year and fitted a separate local linear regression at both sides of the threshold, using a triangular kernel. Reported number of observations corresponds to the effective sample size.

Table A7: Robustness checks (II): Clustering standard errors by year

	winner		vote share (municipal)		seat share (municipal)		vote share (federal)	
(a) PJ	t+2	t+4	t+2	t+4	t+2	t+4	t+2	t+4
estimate $(\hat{\tau}_{RD})$	15.75	23.40	4.07	5.77	4.38	7.40	1.58	2.79
95% CI	[-17.7:48.5]	[3.8:50.6]	[-3.2:12.2]	[1.5:11.7]	[-4.3:14.9]	[2.6:14.6]	[-9.7:11.0]	[-4.3:12.8]
<i>p</i> -value	0.40	0.03	0.30	0.02	0.33	0.01	0.91	0.36
bwd.	21.50	14.49	19.96	12.52	17.49	12.24	21.06	12.19
N	396 380	317 284	380 363	290 250	355 332	286 247	384 367	205 192
control mean	30.24	31.85	32.44	38.15	37.05	42.13	29.71	37.69
(b) UCR								
estimate $(\hat{\tau}_{RD})$	9.14	27.06	3.70	5.63	3.32	6.49	1.24	0.17
95% CI	[-26.4:45.8]	[8.5:54.0]	[-1.4:12.0]	[-0.6:13.7]	[-4.8:11.2]	[-0.3:14.5]	[-5.7:10.5]	[-19.8:17.5]
<i>p</i> -value	0.61	0.01	0.13	0.07	0.45	0.07	0.56	0.90
bwd.	15.35	11.72	10.08	15.29	16.76	15.19	14.05	20.23
N	245 286	190 237	165 203	244 286	258 301	240 285	216 268	209 198
control mean	22.22	19.50	30.87	31.51	33.80	33.21	30.70	27.23

Sharp (conventional) RD estimates, with robust CIs and p-values based on the MSE-optimal bandwidth proposed by Calonico, Cattaneo and Titiunik (2014). The running variable is $margin\ of\ victory_t$. For each reference party, the sample is restricted to municipal elections (i) held in concurrent years; and (ii) in which the party finished in the first or second place. To calculate the estimates, we clustered observations by (election) year and fitted a separate local linear regression at both sides of the threshold, using a triangular kernel. Reported number of observations corresponds to the effective sample size.

Table A8: Robustness checks (III): Employing second-order polynomials

	winner			vote share (municipal)		seat share (municipal)		e share deral)
(a) PJ	t+2	t+4	t+2	t+4	t+2	t+4	t+2	t+4
estimate $(\hat{\tau}_{RD})$	17.19	37.65	4.27	6.56	6.20	9.49	0.62	4.58
95% CI	[-1.5:38.1]	[16.9:66.2]	[-0.7:9.0]	[1.9:11.9]	[-0.2:13.9]	[3.6:17.3]	[-4.5:5.3]	[-0.4:10.4]
<i>p</i> -value	0.10	0.00	0.13	0.02	0.09	0.01	0.87	0.11
bwd.	18.25	13.45	16.68	16.45	15.08	14.94	21.34	14.11
N	362 338	307 267	346 317	340 316	321 295	320 293	389 371	220 214
control mean	30.24	31.85	32.44	38.15	37.05	42.13	29.71	37.69
(b) UCR								
estimate $(\hat{\tau}_{RD})$	11.05	39.43	5.54	9.18	3.27	11.00	3.65	-0.45
95% CI	[-9.4:35.9]	[19.0:67.2]	[1.0:12.1]	[3.5:16.8]	[-2.8:9.4]	[3.5:21.1]	[-1.0:9.7]	[-9.9:8.5]
<i>p</i> -value	0.30	0.00	0.03	0.01	0.34	0.01	0.14	0.90
bwd.	16.90	12.83	13.46	13.85	21.13	13.50	15.06	20.02
N	260 302	211 261	216 273	219 274	304 346	216 273	233 274	209 197
control mean	22.22	19.50	30.87	31.51	33.80	33.21	30.70	27.23

Sharp (conventional) RD estimates, with robust CIs and p-values based on the MSE-optimal bandwidth proposed by Calonico, Cattaneo and Titiunik (2014). The running variable is $margin\ of\ victory_t$. For each reference party, the sample is restricted to municipal elections (i) held in concurrent years; and (ii) in which the party finished in the first or second place. To calculate the estimates, we clustered observations by municipality and fitted a separate second-order polynomial regression at both sides of the threshold, using a triangular kernel. Reported number of observations corresponds to the *effective* sample size.

Table A9: Robustness checks (IV): Demeaned outcomes

	winner		vote share (municipal)		seat share (municipal)		vote share (federal)	
(a) PJ	t+2	t+4	t+2	t+4	t+2	t+4	t+2	t+4
estimate $(\hat{\tau}_{RD})$	10.68	19.60	4.41	4.65	4.54	6.25	2.18	0.38
95% CI	[-1.1:24.0]	[5.9:39.0]	[2.6:7.3]	[1.4:8.3]	[0.9:10.3]	[2.8:11.4]	[0.4:4.5]	[-1.3:1.9]
<i>p</i> -value	0.11	0.02	0.00	0.02	0.04	0.00	0.04	0.77
bwd.	13.77	11.50	10.19	17.61	10.37	11.17	12.49	11.54
N	310 272	265 233	245 212	357 334	247 214	257 227	284 248	196 180
control mean	-7.84	-11.46	-1.85	-2.44	-2.41	-2.71	-1.30	-0.60
(b) UCR								
estimate $(\hat{\tau}_{RD})$	2.37	19.47	0.78	4.37	1.04	5.29	1.38	-0.03
95% CI	[-18.7:22.2]	[4.7:39.6]	[-3.6:5.8]	[0.3:8.9]	[-5.2:6.3]	[-0.9:12.8]	[-2.0:5.3]	[-3.0:2.2]
<i>p</i> -value	0.89	0.04	0.71	0.08	0.88	0.16	0.48	0.78
bwd.	11.20	10.11	9.23	12.31	12.03	10.68	10.28	12.08
N	182 224	165 204	154 187	200 252	193 245	172 215	163 207	132 154
control mean	-7.26	-11.42	-1.05	-2.77	-1.98	-3.02	-1.32	-0.51

Sharp (conventional) RD estimates, with robust CIs and p-values based on the MSE-optimal bandwidth proposed by Calonico, Cattaneo and Titiunik (2014). All outcome variables were demeaned of municipality and year fixed effects. The running variable is $margin\ of\ victory_t$. For each reference party, the sample is restricted to municipal elections (i) held in concurrent years; and (ii) in which the party finished in the first or second place. To calculate the estimates, we clustered observations by municipality and fitted a separate local linear regression at both sides of the threshold, using a triangular kernel. Reported number of observations corresponds to the *effective* sample size.

Table A10: Robustness checks (V): Heterogeneous effects by president copartisanship

	win	ner		share icipal)	seat s (muni			share 'eral)
(a) PJ, copartisan	t-2	t-4	t-2	t-4	t-2	t-4	t-2	t-4
estimate $(\hat{\tau}_{RD})$	37.88	20.33	8.82	6.55	9.65	8.10	5.69	6.06
95% CI	[20.6:63.2]	[3.2:42.7]	[4.6:14.6]	[2.8:11.7]	[3.6:16.5]	[3.0:15.7]	[1.7:10.5]	[2.1:12.4]
<i>p</i> -value	0.00	0.05	0.00	0.01	0.01	0.01	0.02	0.01
bwd.	10.32	13.38	14.92	12.23	13.77	10.77	16.81	8.34
N	118 123	214 217	145 163	201 200	143 155	178 177	153 182	123 118
control mean	26.61	31.20	31.48	36.72	35.12	40.59	34.20	36.13
(b) PJ, opposition								
estimate $(\hat{\tau}_{RD})$	-1.88	45.35	-0.62	3.26	3.01	8.78	-5.09	-1.93
95% CI	[-32.9:24.2]	[16.6:81.7]	[-6.1:5.2]	[-2.9:9.8]	[-5.9:14.0]	[1.1:19.6]	[-13.8:1.3]	[-12.9:7.0]
<i>p</i> -value	0.80	0.01	0.89	0.37	0.50	0.06	0.17	0.64
bwd.	11.15	8.65	11.77	9.82	8.92	7.74	13.67	9.92
N	133 97	57 35	144 103	64 39	111 79	47 34	164 115	34 22
control mean	33.09	33.33	33.19	41.35	38.56	45.59	26.20	44.56
(c) UCR, copartisa	an							
estimate $(\hat{\tau}_{RD})$	-15.62	29.81	1.15	3.74	2.59	0.33	-0.75	-7.47
95% CI	[-45.4:9.5]	[-0.9:62.1]	[-4.2:7.0]	[-4.2:12.3]	[-5.1:10.6]	[-8.1:7.5]	[-6.3:4.2]	[-15.8:-2.7]
<i>p</i> -value	0.28	0.11	0.69	0.42	0.56	0.96	0.73	0.02
bwd.	10.47	13.93	11.47	10.95	11.29	15.19	11.75	9.05
N	87 133	47 95	97 142	38 72	96 139	51 99	96 144	17 28
control mean	27.23	10.26	30.52	36.14	34.41	39.45	32.96	39.93
(d) UCR, oppositi	on							
estimate ($\hat{\tau}_{RD}$)	43.01	30.75	7.80	7.35	5.34	8.37	6.13	-0.30
95% CI	[23.0:69.2]	[12.9:57.4]	[3.9:14.5]	[2.2:14.1]	[-0.6:11.0]	[2.0:15.9]	[0.6:14.4]	[-8.9:7.5]
<i>p</i> -value	0.00	0.01	0.00	0.02	0.11	0.03	0.07	0.89
bwd.	11.51	9.22	9.27	13.03	19.14	16.52	10.54	14.06
N	89 87	119 128	73 72	167 175	134 116	200 192	83 79	127 123
control mean	17.99	21.49	31.16	30.52	33.28	31.86	28.91	25.01

Sharp (conventional) RD estimates, with robust CIs and p-values based on the MSE-optimal bandwidth proposed by Calonico, Cattaneo and Titiunik (2014). The running variable is $margin\ of\ victory_t$. Standard errors are clustered by municipality. Presidential copartisanship is measured at the same time as the outcome variable. Samples are restricted to municipal elections (i) held in concurrent years; and (ii) in which the party finished in the first or second place. Reported number of observations corresponds to the *effective* sample size.

Table A11: Robustness checks (VI): Heterogeneous effects by presidential approval (PJ only)

	winner		vote share (municipal)		seat share (municipal)			share eral)
(a) High approval	t-2	t-4	t-2	t-4	t-2	t-4	t-2	t-4
estimate $(\hat{\tau}_{RD})$	28.71	25.68	9.97	6.14	12.48	9.54	6.80	8.49
95% CI	[0.1:70.1]	[5.1:49.7]	[3.0:19.0]	[1.1:12.8]	[0.9:28.0]	[1.1:20.6]	[-1.2:15.3]	[2.6:17.5]
<i>p</i> -value	0.09	0.04	0.02	0.04	0.07	0.07	0.16	0.02
bwd.	13.25	21.18	19.01	19.08	17.76	12.40	16.59	9.30
N	49 53	153 155	63 72	145 145	61 70	111 100	56 64	86 76
control mean	24.72	32.50	26.18	34.74	30.12	39.25	31.97	34.14
(b) Low approval								
estimate $(\hat{\tau}_{RD})$	36.53	37.38	7.55	5.72	7.54	7.27	4.68	1.90
95% CI	[13.8:67.6]	[8.2:83.6]	[1.6:13.1]	[1.2:11.9]	[-0.2:14.0]	[1.0:16.9]	[-0.5:9.8]	[-2.1:7.4]
<i>p</i> -value	0.01	0.04	0.03	0.04	0.10	0.06	0.14	0.36
bwd.	10.29	6.79	13.86	11.06	13.64	8.84	15.26	11.77
N	76 82	59 70	92 100	82 95	92 99	72 82	91 107	55 65
control mean	31.06	33.56	31.49	36.10	36.52	40.89	27.61	34.14

Sharp (conventional) RD estimates, with robust CIs and *p*-values based on the MSE-optimal bandwidth proposed by Calonico, Cattaneo and Titiunik (2014). The running variable is *margin of victory_t*. Standard errors are clustered by municipality. Samples are restricted to instances in which the outcome variable was measured in an election in which the president was from the PJ. "High" (respectively, "Low") approval means that in the quarter before the election, the president's net approval rating was above (below) the median value for the full period (see Table A1). The sample is restricted to municipal elections (i) held in concurrent years; and (ii) in which the PJ finished in the first or second place. Reported number of observations corresponds to the *effective* sample size.