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Online Appendix

A Proofs and derivations

Proof of the Remark. G monitors one mayor at random, and upon monitoring she receives

one of two signals: either the mayor is exerting e�ort or not. Because we restrict the analysis

to “symmetric equilibria”, we only consider situations in which all bad-type mayors employ

the same decision rule. Under these assumptions, we first derive the posterior probability

that a mayor is of good type, conditional on not observing e�ort:

Pr(good|e=0)= Pr(e=0|good)Pr(good)
Pr(e=0|good)Pr(good)+Pr(e=0|bad)Pr(bad)

= 0 ··
0 ·· +(1≠·)(1≠‡) =0,

(2)

where ‡ is the probability that a bad type will exert e�ort. When G fails to observe e�ort

from a monitored mayor, she can infer with certainty that the mayor is a bad type; if G then

decides to promote some other mayor, the probability of selecting a good type is · >0.

On the other hand, when G observes e�ort from a monitored mayor, she updates her

beliefs about the mayor’s type in the following manner:

Pr(good|e=1)= Pr(e=1|good)Pr(good)
Pr(e=1|good)Pr(good)+Pr(e=1|bad)Pr(bad)

= ·

· +(1≠·)‡ Ø ·,

(3)

with the inequality holding strictly as long as ‡ <1. Thus, upon observing that a mayor is

exerting e�ort, the governor cannot do better than promoting him. ⌅

Proof of Theorem 1. The argument proceeds in two parts. We begin by showing that

the mayor’s optimal strategy is to campaign in favor of the copartisan candidate as long

as rØrú. We then show that, conditional on the mayor choosing e=1, the governor will
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also campaign on behalf of the copartisan candidate if k Ækú. The first part follows from

comparing expected utilities E(U |e=1, c=m=0) and E(U |e=0, c=m=0) (we use U for the

mayor’s utility, V for the governor’s utility). The only complication arises from the fact that

these utilities comprise probabilities for di�erent events, namely, the number of incumbent

party mayors that exert e�ort because they are of good type. In a scenario where we need

to guess the types of the other two candidates in the district, the probabilities that 0, 1, or 2

other mayors are of good type are, respectively, (1≠·)2, 2·(1≠·), and · 2, and the expected

reward is r/3. With these quantities in hand, we can derive the Proof of Theorem 1 for a

scenario with three copartisan mayors:

E(U |e=1, c=m=0)ØE(U |e=0, c=m=0)
5
31≠s

3 Â ≠vÂ + 1
2

6

¸ ˚˙ ˝
Pr(Win|e=1)

r

3 ≠f Ø
5
(1≠·)2

31
2 ≠vÂ

46

¸ ˚˙ ˝
Pr(Win|3 bad types)

r

3 +

+
5
2·(1≠·)

31
2 + 1≠s

3 Â ≠vÂ
46

¸ ˚˙ ˝
Pr(Win|2 bad types)

r

3 +

+
5
· 2

31
2 +21≠s

3 Â ≠vÂ
46

¸ ˚˙ ˝
Pr(Win|1 bad type)

r

3

rú
3
Ø 9f

Â(1≠s)(3≠2·) .

(4)

The calculus for scenarios with one and two copartisan mayors is similar. Note that when

there are two mayors, a bad-type mayor knows the probability that the other mayor is also a

bad-type to be (1≠·), and he also needs to factor in the probability that opposition mayors

are of good type, which explains the additional terms that depend on · in the probabilities

of victory. The calculus of expected utilities for the case with two copartisan mayors follows:

E(U |e=1, c=m=0)ØE(U |e=0, c=m=0)
C

Â

A

(2≠·)
31≠s

3

4
≠v

B

+ 1
2

D
r

2 ≠f Ø·

C

Â

A

(1≠·)
31≠s

3

4
≠v

B

+ 1
2

D
r

2

+(1≠·)
C

Â

A

≠·
31≠s

3

4
≠v

B

+ 1
2

D
r

2

rú
2
Ø 6f

Â(1≠s)(2≠·) .

(5)
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A bad-type mayor in a 1-copartisan-mayor scenario campaigns if E(U |e=1, c=m=0)Ø

E(U |e=0, c=m=0), i.e., if

A

Â
31≠s

3

4
≠Â

5
v +2· 2

31≠s

3

4
+2·(1≠·)

31≠s

3

46
+ 1

2

B

r≠f Ø
A

1
2 ≠Â

5
v +2· 2

31≠s

3

4
+2·(1≠·)

31≠s

3

46B

r, (6)

which obtains when rú
1
Ø 3f

Â(1≠s) . Note that rú
1
<rú

2
<rú

3
.

The second part of the proof is as follows: First, if r>rú, the reward is large enough

that bad mayors always have an incentive to exert e�ort. In consequence, G does not have

an incentive to monitor, which would at best reveal that the mayors are exerting e�ort.

However, G has an incentive to campaign if the cost is low enough. This follows from

comparison of expected utilities E(V |e=1, c=1) and E(V |e=1, c=0). In the scenario with

three copartisan mayors, the comparison is as follows:

E(V |e=1, c=1)ØE(V |e=1, c=0)
5
sÂ +3

31≠s

3

4
Â ≠vÂ + 1

2

6

¸ ˚˙ ˝
Pr(Win|e=1,c=1)

· ≠k Ø
5
3

31≠s

3

4
Â ≠vÂ + 1

2

6

¸ ˚˙ ˝
Pr(Win|e=1,c=0)

·

kú

3
ÆÂs·.

(7)

Note that · enters these expected utilities as the probability that the mayor that the governor

taps for promotion is actually of good type. The calculus for the other two scenarios is similar.

When there are two copartisan mayors, G campaigns if
5
sÂ +(2≠·)

31≠s

3

4
Â ≠vÂ + 1

2

6
· ≠k Ø

5
(2≠·)

31≠s

3

4
Â ≠vÂ + 1

2

6
·

kú

2
ÆÂs·,

(8)

and, with a single copartisan mayor, G campaigns if
5
sÂ +(1≠2·)

31≠s

3

4
Â ≠vÂ + 1

2

6
· ≠k Ø

5
(1≠2·)

31≠s

3

4
Â ≠vÂ + 1

2

6
·

kú

1
ÆÂs·.

(9)

Note that kú

1
=kú

2
=kú

3
=kú, which means that e�ort-inducing cost kú does not depend on the
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number of copartisan mayors in the district.

We finally show that bad-type mayors have no incentive to deviate from campaigning

when the governor also campaigns. The mayor’s calculus in a scenario with three copartisan

mayors is as follows:

E(U |e=1, c=1)ØE(U |e=0, c=1)
5
sÂ +3

31≠s
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4
Â ≠vÂ + 1
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6
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r
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3
.

(10)

Inspection of the relevant utilities in the other two scenarios confirms that r†

2 =rú
2

and r†

1 =rú
1
.

With two copartisan mayors:
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(11)

and with one copartisan mayor:
C

Â

A
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1
.

(12)

We confirm that threshold rú alone determines whether bad-type mayors will have an incen-

tive to mobilize in pure-strategy equilibria. ⌅

Proof of Theorem 2. We first prove that the governor will have no incentives to campaign

(i.e., she will choose c=0) whenever k Økú. We will then show that G might still have an

incentive to monitor under these circumstances.
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Consider first the scenario with three copartisan mayors:30

E(V |e=0, c=0)ØE(V |e=0, c=1)
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Similarly, a comparison of utilities in the 2- and 1-copartisan-mayor scenarios reveals that

G will not campaign if k Økú. For the 2-copartisan-mayor scenario:

E(V |e=0, c=0)ØE(V |e=0, c=1)
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while in the 1-copartisan mayor scenario:

E(V |e=0, c=0)ØE(V |e=0, c=1)
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We have shown that G never has an incentive to campaign if k >kú. We now consider

whether there exists an incentive to monitor under di�erent values of k. We consider two

30Here, 3·(1≠·)2 captures the probability that exactly 1 copartisan mayor will be of good
type, therefore exerting e�ort. The probabilities of exactly 2 and exactly 3 good types are
similarly defined as 3· 2(1≠·) and · 3, respectively.
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cases, depending on whether k is larger or smaller than kú.

Case 1: k >kú. We will define vú
3

as the value of v that makes G (weakly) prefer monitoring

in a 3-copartisan mayor scenario:31
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The value of vú
2

corresponding to a scenario with two mayors follows:
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In a 1-copartisan-mayor scenario, G never has an incentive to monitor. The comparison of

relevant utilities reveals that the governor would monitor only if this action were costless —

there is no value of v that provides G with an incentive to monitor a potential bad-type for

31The structure of these expected utilities looks daunting, but each term contains the product
of three elements: (a) the probability that there are exactly n good-type copartisan mayors;
(b) the probability of winning given that there are exactly n good-type copartisan mayors;
and (c) the posterior probability of promoting a good-type mayor conditional on G choosing
to monitor or not.
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whom there are no substitutes because there are no other copartisan mayors to promote:

E(V |m=1, e=0)ØE(V |c=m=0, e=0)
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The last statement contradicts the assumption that g >0. Values of v Ævú lead to equilibria

in which G might be better o� choosing m=1 rather than choosing c=m=0. The headhunter

monitoring equilibrium further requires a very low reward, which removes any motivation

that bad types may have to exert e�ort in the presence of monitoring. The threshold rÕ under

which mayors will not exert e�ort follows from comparing utilities, first for the scenario with

three mayors:

E(U |e=1,m=1)=E(U |e=0,m=1)
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The relevant comparison of utilities for the scenario with two mayors follows:

E(U |e=1,m=1)=E(U |e=0,m=1)
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Because parameters s and · range between 0 and 1, and because of the restrictions on v and
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Â (which imply that 1/2≠vÂ is positive), it is easy to verify that rÕ
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The proof that rú
2
ØrÕ

2
is analogous. Finally, there are values of r under which a bad-type

would exert e�ort in a scenario where he is the single copartisan mayor and G monitors.

However, since G never has an incentive to monitor in these circumstances, e�ort by a bad-

type mayor cannot be sustained in equilibrium.

Case 2: k <kú. We established that G will prefer c=1 over c=m=0, but we have not

considered the possibility that she will prefer m=1 over c=1, which could happen when k

is low. With three copartisan mayors, this occurs whenever v >v
Õ

3
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With two copartisan mayors, G prefers m=1 to c=1 when:
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Note that vÕ
3
>vÕ

2
. Finally, G has no incentive to choose monitoring over campaigning in

scenarios with one mayor. To see this, consider G’s utility calculus:
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Because we are inspecting a situation where k <kú, we know that k ≠Âs· <0, which means

that the statement k ≠Âs· Øg cannot be true since g is strictly positive. ⌅

Proof of Theorem 3. From Theorem 1, we know that exerting e�ort is not a dominant

strategy for mayors when r<rú. We will now assume that v Ømax{vÕ
3
,vú

3
}, i.e., that the oppo-

sition’s normal vote in the district is relatively high (which need not mean that v >0). From

Theorem 2 we know that the governor has no incentive to monitor when opposition support

is high, and therefore mayors have no incentive to exert e�ort. The governor may still have

an incentive to campaign, though, and this will happen under the following circumstances:
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For a scenario with two mayors:
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And in the one-mayor scenario:
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The next step is to check that bad-type mayors still lack an incentive to exert e�ort when

the governor campaigns. This follows from comparison of utilities:
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E(U |e=1, c=1)ØE(U |e=0, c=1)
5
Â

3
s+3

31≠s

3

4
≠v

4
+ 1

2

6
r

3 ≠f Ø· 2

5
Â

3
s+2

31≠s

3

4
≠v

4
+ 1

2

6
r

3+

2·(1≠·)
5
Â

3
s+

31≠s

3

4
≠v

4
+ 1

2

6
r

3

+(1≠·)2

5
Â(s≠v)+ 1

2

6
r

3

rØ 9f

Â(1≠s)(3≠2·) =rú
3
.

Bad types still lack an incentive to exert e�ort in a scenario with two copartisan mayors:

E(U |e=1, c=1)ØE(U |e=0, c=1)
C

Â

A

(2≠·)
31≠s

3

4
+s≠v

B

+ 1
2

D
r

2 ≠f Ø·

C

Â

A

(1≠·)
31≠s

3

4
+s≠v

B

+ 1
2

D
r

2

+(1≠·)
C

Â

A

≠·
31≠s

3

4
+s≠v

B

+ 1
2

D
r

2

rØ 6f

Â(1≠s)(2≠·) =rú
2
,

(28)

and the same is true in the one-mayor scenario:

E(U |e=1, c=1)ØE(U |e=0, c=1)
5
Â

3
s+(1≠2·)

31≠s

3

4
≠v

4
+ 1

2

6
r≠f Ø

5
Â

3
s≠2·

31≠s

3

4
≠v

4
+ 1

2

6
r

rØ 3f

Â(1≠s) =rú
1
.

(29)

These derivations confirm that the bad-type mayor will mobilize only if rØrú, but this con-

tradicts the condition r<rú under which the selfless governor equilibrium exists.

Finally, we assumed that the selfless governor equilibrium can obtain when the normal

vote for the opposition is su�ciently low, i.e., when v <max{vÕ,vú}. We now show that

k <kú∆vÕ<vú and k >kú∆vÕ>vú. We do this by showing that vÕ
3
=vú

3
…k =kú

3
(the proof
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that vÕ
2
=vú

2
…k =kú

2
is basically identical):

vú
3
=vÕ

3

1
2Â

≠ g

·(1≠·)Â +
31≠s

3

4
(1+·)= 1

2Â
+ k ≠g

·(1≠·)Â +
31≠s

3

4
(1+·)≠ s

1≠·
k

·(1≠·)Â = s

1≠·

k =Âs·. (30)

⌅

Proof of Theorem 4. The first step is to show that no combination of pure strategies

constitutes an equilibrium, and thus the game can only have equilibria in mixed strategies.

We derive this step for the scenario with three mayors, but the proof for the scenario with

two mayors follows along similar lines. We proceed in three parts: (i) Theorem 2 implies

that if v <vú or v <vÕ and bad mayors play e=0, the governor always prefers monitoring to

campaigning. This rules out all equilibria in which the governor always plays c=1, as well as

any equilibrium in which e=0 and m=0. (ii) From Theorem 1 we know that an equilibrium

in which bad mayors always play e=1 while the governor always plays m=0 is only possible

if r>rú
3
; therefore, the pair of strategies (e=1,m=0) cannot be an equilibrium either. (iii)

Assume that bad mayors always play e=1. In this case, the governor will respond with

m=1 i�

E(V |m=1, e=1)>E(V |m=0, e=1)
5
Â

3
3

31≠s

3

4
≠v

4
+ 1

2

6
· ≠g >

5
Â

3
3

31≠s

3

4
≠v

4
+ 1

2

6
·

0>g, (31)

which contradicts the assumption that g >0, and thus rules out the pair (e=1,m=1) as

an equilibrium choice. (iv) Finally, for (e=0,m=1) to be an equilibrium, it must be the

case that E(U |m=1, e=0)>E(U |m=1, e=1); but from the Proof of Theorem 2, we know

that this can only be the case if r<rÕ
3
. Thus, no combination of pure strategies can be
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sustained in equilibrium when rÕ
3
<r<rú

3
and v <vú

3
or v <vÕ

3
A similar proof holds for a

scenario with two mayors. In the case of a single mayor, Theorem 2 and 3 imply that the

governor never has an incentive to monitor, which means that m=1 cannot be part of a mixed

strategy equilibrium; in the one-copartisan scenario, no equilibrium in mixed strategies is

thus possible. This completes the proof that under the set of assumptions established for

Theorem 4, there are no equilibria in pure strategies.

The second step requires showing that there is at least one equilibrium in mixed strategies

under the conditions specified by Theorem 4. McCarty and Meirowitz (2007) show that

Bayesian normal form games are special cases of normal form games, and thus they have at

least one (Bayesian) Nash equilibrium in mixed strategies (see Proposition 6.1, pp. 168-9).

Specifically, the requirement for such an equilibrium to exist is that (i) the set of players,

(ii) the set of feasible strategies and (iii) the set of players’ types are all finite. Under the

parameter restrictions specified by the assumptions of Theorem 4, the game satisfies these

conditions, and thus it must have at least one equilibrium in mixed strategies.

The third step requires showing that there is at most one equilibrium in mixed strategies.

To do so, we first show that the probabilities with which G and the bad type mix depend on

r, f and g. Let fi and (1≠fi) be the probabilities with which G mixes between monitoring

(m=1, c=0) and not monitoring (m=0, c=0), respectively. Let fiú be the value of fi that

makes bad types indi�erent between exerting and not exerting e�ort, i.e., E(U |e=1,m=fi)=

E(U |e=0,m=fi) . With three copartisan mayors, the equality takes the following form:

5
Â

3
3

31≠s

3

4
≠v

4
+ 1

2

6
r

3 ≠f =

2·(1≠·)
3

Â
31≠s

3 ≠v
4

+ 1
2

4
fir

6 +(1≠·)2

3
≠Âv + 1

2

4
fir

3 +

+
5
· 2

3
Â

3
2

31≠s

3

4
≠v

4
+ 1

2

4
+2·(1≠·)

3
Â

31≠s

3 ≠v
4

+ 1
2

4
+(1≠·)2

3
≠Âv + 1

2

46
(1≠fi)r

3

(32)
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After algebraic manipulation, the equation reduces to the following expression:

fiú

3
=

3f
Âr ≠(3≠2·)1≠s

3Ë
1≠s

3
(1+·)+ 1

2Â ≠v
È
·

(33)

Since the denominator is always positive, fiú

3
will be in the unit-range if

C31≠s

3

4
(1+·)+ 1

2Â
≠v

D

· >
3f

Âr
≠(3≠2·)

31≠s

3

4
>0. (34)

Similarly, in the 2-mayor case the equilibrium value of fi is given by

C

Â

A

(2≠·)
31≠s

3

4
≠v

B

+ 1
2

D
r

2 ≠f =

·

C

Â

A

(1≠·)
31≠s

3

4
≠v

B

+ 1
2

D

(1≠fi)r

2 +(1≠·)
C

Â

A

≠·
31≠s

3

4
≠v

B

+ 1
2

D
r

2

fi·

C

(1≠·)
31≠s

3

4
+ 1

2Â
≠v

D

= 2f

rÂ
≠(2≠·)

31≠s

3

4
, (35)

which reduces to:

fiú

2
=

2f
rÂ ≠(2≠·)1≠s

3Ë
(1≠·)1≠s

3
+ 1

2Â ≠v
È
·

. (36)

Since the denominator is always positive, fiú

2
will be in the unit range as long as

C31≠s

3

4
(1≠·)+ 1

2Â
≠v

D

· >
2f

rÂ
≠(2≠·)

31≠s

3

4
>0. (37)

On the other hand, let fl and (1≠fl) be the probabilities with which the mayor mixes between

exerting and not exerting e�ort (e=1 and e=0, respectively) in order to make G indi�erent

between monitoring and not monitoring, i.e., in order to yield E(V |m=1, e=fl)=E(V |m=

0, e=fl). With three copartisan mayors:32

32We consider only symmetric equilibria (see fn. 12 in the main text), which means that
when one bad type campaigns, all bad types campaign. Yet, inside the first curly bracket
in Expression 38 we have terms for e�ort exerted by two bad types (fl2), one bad type
(2fl(1≠fl)), or none ((1≠fl)2). This is because, in keeping with the analysis of symmetric
equilibria, all bad types are playing a mixed strategy in which each of them exerts e�ort,
independently, with probability fl.
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3·(1≠·)2

;5
Â

3
3

31≠s

3

4
≠v

4
+ 1

2

6 1
3fl2+

5
Â

3
2

31≠s

3

4
≠v

4
+ 1

2

6 1
22fl(1≠fl)

+
5
Â

31≠s

3 ≠v
4

+ 1
2

6 2
3(1≠fl)2

<

+3· 2(1≠·)
;5

Â
3

3
31≠s

3

4
≠v

4
+ 1

2

6 2
3fl+

5
Â

3
2

31≠s

3

4
≠v

4
+ 1

2

6
(1≠fl)

<

+· 3

;
Â

3
3

31≠s

3

4
≠v

4
+ 1

2

<
≠g=

3·(1≠·)2

;5
Â

3
3

31≠s

3

4
≠v

4
+ 1

2

6 1
3fl2+

5
Â

3
2

31≠s

3

4
≠v

4
+ 1

2

6 1
32fl(1≠fl)

+
5
Â

31≠s

3

4
+ 1

2

6 1
3(1≠fl)2

<

+3· 2(1≠·)
;5

Â
3

3
31≠s

3

4
≠v

4
+ 1

2

6 2
3fl+

5
Â

3
2

31≠s

3

4
≠v

4
+ 1

2

6 2
3(1≠fl)

<

+· 3

;
Â

3
3

31≠s

3

4
≠v

4
+ 1

2

<
(38)

After rearranging terms, this expression reduces to:

fl2(≠1)(1≠·)
31≠s

3

4

¸ ˚˙ ˝
a<0

+fl(≠1)
C

1
2Â

≠v+2
31≠s

3

4
·

D

¸ ˚˙ ˝
b<0

+ 1
2Â

≠v+
31≠s

3

4
(1+·)≠ g

·(1≠·)Â
¸ ˚˙ ˝

c

=0,

and thus the equilibrium value of fl will be given by

flú
3
=

(+)
˙˝¸˚
≠b ±

(+)
˙ ˝¸ ˚Ô

b2 ≠4ac

2a¸˚˙˝
(≠)

, (39)

which can at most take one value within the (0,1) interval. On the other hand, in the

2-mayor case the equilibrium value of fl is given by

· 2

C

Â

A

(2≠·)
31≠s

3

4
≠v

B

+ 1
2

D

+2·(1≠·)
C

Â

A

(2≠·)
31≠s
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4
≠v

B

+ 1
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D
1
2fl

+2·(1≠·)
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Â
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(1≠·)
31≠s

3

4
≠v

B

+ 1
2

D

(1≠fl)≠g =

· 2

C

Â

A

(2≠·)
31≠s

3

4
≠v

B

+ 1
2

D

+2·(1≠·)
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Â

A

(2≠·)
31≠s
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4
≠v

B

+ 1
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D
1
2fl

+2·(1≠·)
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Â
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(1≠·)
31≠s

3

4
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B

+ 1
2

D
1
2(1≠fl),
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(40)

which reduces to

fl

C

v ≠ 1
2Â

≠(1≠·)
31≠s

3

4D

= g

·(1≠·)Â +v ≠ 1
2Â

≠(1≠·)
31≠s

3

4

flú
2
= g

·(1≠·)Â
C

v ≠ 1
2Â

≠(1≠·)
31≠s

3

4D

¸ ˚˙ ˝
<0

+1, (41)

which takes a unique value. ⌅
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B A potential identification strategy

We propose a causal identification strategy based on Folke’s (2014) pioneering idea of employ-

ing the number of seats that a party barely wins or loses in a high-magnitude proportional

representation district as an instrument for the total number of seats that a party captures

in a district. Adapting this insight to Mexico’s political system, we use the proportion of

municipalities that a party barely wins or loses in a district as an instrument for the pro-

portion of copartisan mayors that the party controls in that district.33 The rationale behind

this approach is that as the distance between the winner and first loser of a mayoral race

goes to zero, the partisan status of the winning mayor is assigned as if randomly (this is

the same principle exploited by regression discontinuity designs). In any given district, a

varying number of municipalities may be closely won or lost, yielding a measure of the num-

ber of municipalities whose partisan status could be seen as exogenously determined. While

a party’s electoral performance in a district cannot be considered exogenous, a given party

will win more close municipal races in some districts than in others, introducing variation in

the proportion of copartisan mayors it controls in similar districts. That is, our identifica-

tion strategy is based on comparing districts that di�er in the proportion of municipalities

controlled by copartisans solely because that party won (or lost) a relatively large number

of close municipal races. Instrumenting for the proportion of copartisan mayors in this way

satisfies the exclusion restriction as long as we control for the proportion of close races in a

district, which cannot be characterized as exogenous.

Consider the following example of two districts, A and B, each with four municipalities

numbered 1 through 4. Table A1 shows hypothetical vote shares for mayoral candidates in

the eight municipalities. In District A, the PRI has three mayors and the PAN has one,

whereas in District B one municipality belongs to the PRI, one to the PAN, and two to the

PRD. We want to estimate the e�ect of the number of copartisan mayors on the vote share

for party j’s candidate at the district level, that is: Vote Sharej =f(#Mayorsj).

33We alternatively define close elections as those decided by less than 5 or 2.5 percent points.
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Table A1: Vote shares for mayoral candidates in eight municipalities
District A

PRI PAN PRD
A1 37.0 36.5 26.5
A2 33.2 33.4 33.3
A3 60.0 20.0 20.0
A4 50.2 49.7 0.1

# captured
municipalities 3 1 0

District B
PRI PAN PRD

B1 50.0 25.0 25.0
B2 49.0 1.7 49.3
B3 22.0 42.0 36.0
B4 30.0 0.0 70.0

# captured
municipalities 1 1 2

To instrument #Mayors, we consider the number of copartisan mayors — i.e., “captured

municipalities” — in the district that won their elections by a margin of less than five per-

centage points. Parties that barely lost a mayor (by a margin of 5pp or less) get a ≠1

2
and

parties that barely won get 1

2
.34 The instrument at the district level is the sum of barely

lost/barely won mayors, but the summands are weighted by the municipality’s share of the

district population. Table A2 shows the values of the instrumental variable for the three

parties in the two districts (wd is the municipality’s share of the total district population, so

�dwd=1):

Table A2: Construction of instrumental variable in eight municipalities
District A

PRI PAN PRD
A1 1

2
w1 ≠1

2
w1 0

A2 ≠1

2
w2

1

2
w2 ≠1

2
w2

A3 0 0 0
A4 1

2
w4 ≠1

2
w4 0

Instrument w1≠w2+w4

2
≠w1+w2≠w4

2
≠w2

2

District B
PRI PAN PRD

B1 0 0 0
B2 ≠1

2
w2 0 1

2
w2

B3 0 0 0
B4 0 0 0

Instrument ≠w2

2 0 w2

2

We use the district-level instrument in a 2SLS regression setup. The first-stage is

#Mayorsd,t=–+⁄
ÿ

cm,t≠1 ·wm,d+“
ÿ

vm,t≠1 ·wm,d+g
1ÿ

Vm,d,t≠1

2
+”t+Ád,t,

34We follow Folke (2014) in writing (minus) 1

2
rather than (minus) 1 because we include an

additional control variable that takes the value of 1

2
whenever there was a close race in a

district. Thus, we have 1

2
+ 1

2
=1 if there was a close municipal race that party j won, and

1

2
≠ 1

2
=0 if there was a close race that party j lost.
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where d indexes districts, m indexes municipalities (nested within districts), t indexes election

years, c takes the value of 1

2
if the immediately preceding election (at t≠1) in municipality

m was close, v takes the value of (minus) 1

2
if the party (lost) won the close election in

municipality m at t≠1, wm,d indicates municipality m’s share of district d’s population,

g(q
Vm,d,t≠1) is a fourth-order polynomial of the party’s normal vote share, and ”t is a

year fixed e�ect. To continue with the example above, assume that wd=0.25 ’ d (i.e.,

all four municipalities within both districts have equal population). Table A3 shows the

population-weighted number of mayors elected as if randomly (the instrument that we use),

the population-weighted number of close elections for the party in the district, and the

population-weighted number of actual mayors (the endogenous variable that we instrument):

Table A3: Instrument, close elections, and observed mayors in eight municipalities
District A District B

Party Instrument Close election Observed Instrument Close election Observed
PRI 1/8 3/8 3/4 –1/8 1/8 1/4
PAN –1/8 3/8 1/4 0 0 1/4
PRD –1/8 1/8 0 1/8 1/8 2/4

The second stage regression is

winnerd,t=µ+fl
ÿ

cm,t≠1 ·wm,d+— \#Mayorsd,t+g
1ÿ

Vm,d,t≠1

2
+’t+‹d,t,

where \#Mayorsd,t is the instrumented treatment and winnerd,t is an indicator of whether

the copartisan congressional candidate carried the district.

To consider the number of mayors that a party barely won/lost in a district a valid

instrument of the number of mayors that a party holds, we need to assess the verisimilitude

of a number of assumptions (Sovey and Green 2011). The instrument is relevant in that its

correlation with weighted number of mayors is high (around 0.55–0.60). The instrument is

strong, as suggested in Table A4 by F -statistics for excluded instruments that amply surpass

the F=10 cut-o� point commonly used as a rule-of-thumb for weak instruments (Staiger and

Stock 1997). The instrument complies with the monotonicity assumption, which would be

violated if, for example, lower values of mayoralties barely won/lost corresponded to much
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higher numbers of actual municipalities held by a party because the party manages to subvert

electoral results in court or by force (contested mayoral elections exist but are a tiny fraction

of all mayoral elections).

The most important assumption, the exclusion restriction, is violated by the instrument

if the number of close races is not controlled for. Consider an alternative mechanism through

which the number of mayors barely won/lost may correlate with the probability of winning

the district. First, the number of mayors barely won/lost increases with the number of close

races in the district. Second, the number of close races in the district may a�ect future

electoral outcomes directly, for example if parties campaign harder and spend more money

in the district in anticipation that elections will be close. This potential violation of the

exclusion restriction is in fact noted by Folke (2014). Yet as he argues, this alternative

pathway is blocked — and validity of the exclusion restriction restored — through inclusion

of the proportion of close elections in the district as an additional control. Thus, while

including the instrument as a regressor on its own would violate the exclusion restriction,

the instrument satisfies the exclusion restriction once we control for the proportion of close

elections in a district. Note as well that we include controls for district vote share, and

in some specifications also for fixed state- and election-e�ects. These are necessary if the

number of close elections is somewhat driven by vote share (parties with larger vote shares

are more competitive, and therefore likely to be close to the discontinuity more often), by

state characteristics (the voters in a particular state may be evenly divided among parties,

therefore generating a larger number of close elections), or by electoral race (federal elections

in a particular year may have led to a larger number of even contests).

In keeping with an the analysis of PRI-controlled municipalities to avoid lack of inde-

pendence across observations with copartisan and opposition governors, Table A4 displays

two-stage least squares estimates of the e�ect of the proportion of copartisan PRI mayors in

a district on the probability that the PRI congressional candidate will win the district based

on two sets of observations: for candidates with PRI governors and without PRI governors).

In both cases, the instrument is the (population-weighted) proportion of municipalities in
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a district that a party won or lost by a margin of five percentage points or less. In the

first-stage specification we regress the (population-weighted) observed number of coparti-

san mayors on the instrument, the (population-weighted) proportion of close mayoral races

in the district, a fourth-order polynomial of the party’s normal vote share in the district,

the margin of victory in the previous election, the municipality’s poverty level, and a set

of election-year dummies. Models 2 and 4 add state fixed e�ects. Across all models the

instrument is a statistically significant predictor of the (population-weighted) proportion of

copartisan mayors in the municipality. Furthermore, F -statistics for the excluded instrument

amply surpass the cut-o� point suggested by Staiger and Stock (1997), alleviating concerns

that the instrument may be weak.

In the second-stage model we estimate the e�ect of the instrumented proportion of co-

partisan mayors on the probability that the party will win the district, based on a linear

probability model.35 In line with expectations, comparing the intercept estimates in Mod-

els 1–2 against those in Models 3–4 confirms that, when there are no copartisan mayors in

the district, the probability that a congressional candidate will carry a district in a state

with a copartisan governor is larger than the probability that she will win the election if the

state is led by a non-copartisan governor. We also find that the (instrumented) proportion

of copartisan mayors in the district has a stronger e�ect on the probability of winning the

district when there is an opposition governor. Table A5 shows that the results are essentially

identical when we do not weight the proportion of copartisan mayors by the municipality’s

population, and Table A6 shows that the results remain in place — though the estimates

become substantially noisier — when using a 2.5 pp. instead of a 5 pp. margin to define

close elections.

35We did not use a probit/logit specification for the second stage for lack of a “canned”
routine to estimate standard errors that account for estimation uncertainty in the first
stage.
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Table A4: 2SLS estimates: e�ect of proportion of copartisan mayors on a congres-
sional candidate’s probability of victory in Mexico, 2000-2012 (PRI only)

Copartisan governor Opposition governor

(1) (2) (3) (4)

(a) Second stage regression (outcome: copartisan victory)

Proportion of copartisan mayors -0.11 -0.03 0.63 0.52
(instrumented) (0.14) (0.15) (0.13)ú (0.12)ú

Margin of victory (lagged) 0.32 -0.11 0.08 0.15
(0.19) (0.24) (0.46) (0.51)

Poverty 0.11 0.19 0.13 0.05
(0.03)ú (0.04)ú (0.03)ú (0.04)

Proportion of close elections -0.05 -0.01 0.22 0.27
(0.18) (0.17) (0.17) (0.19)

Intercept 0.76 0.47 0.08 0.08
(0.12)ú (0.15)ú (0.06) (0.08)

RMSE 0.37 0.36 0.34 0.33

(b) First stage regression (outcome: proportion of copartisan mayors)

Proportion barely won/lost 0.96 0.96 1.05 0.97
(0.04)ú (0.05)ú (0.05)ú (0.13)ú

Margin of victory (lagged) -0.29 -0.46 -0.37 -0.43
(0.11)ú (0.10)ú (0.30) (0.16)ú

Poverty -0.04 -0.04 0.01 -0.05
(0.01)ú (0.03) (0.02) (0.08)

Proportion of close elections -0.47 -0.39 0.36 0.31
(0.12)ú (0.14)ú (0.15)ú (0.11)ú

Intercept 0.77 1.10 0.30 0.32
(0.03)ú (0.05)ú (0.05)ú (0.05)ú

RMSE 0.20 0.18 0.26 0.21
F -statistic (excl. instrument) 548 436 510 59

Previous vote share Yes Yes Yes Yes
Year e�ects Yes Yes Yes Yes
State e�ects No Yes No Yes
num. obs. 336 336 146 146
ú p<0.05;

† p<0.10; Instrumental variable estimations of models in Table 2b.

2SLS estimates, standard errors clustered by state in parentheses.

IV is the population-weighted proportion barely won/lost, based on a 5 percentage point margin.
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Table A5: 2SLS estimates: e�ect of proportion of copartisan mayors on a congres-
sional candidate’s probability of victory in Mexico, 2000-2012 (unweighted averages,
PRI only)

Copartisan governor Opposition governor

(1) (2) (3) (4)

(a) Second stage regression (outcome: copartisan victory)

Proportion of copartisan mayors -0.03 0.04 0.70 0.56
(instrumented) (0.14) (0.15) (0.15)ú (0.18)ú

Margin of victory (lagged) 0.33 -0.09 0.09 0.16
(0.19)† (0.22) (0.47) (0.49)

Poverty 0.12 0.19 0.12 0.05
(0.03)ú (0.04)ú (0.03)ú (0.05)

Proportion of close elections -0.04 -0.01 0.15 0.24
(0.19) (0.18) (0.13) (0.17)

Intercept 0.70 0.39 0.07 0.06
(0.11)ú (0.15)ú (0.07) (0.10)

RMSE 0.37 0.36 0.34 0.33

(b) First stage regression (outcome: proportion of copartisan mayors)

Proportion barely won/lost 0.99 0.99 1.08 0.97
(0.05)ú (0.05)ú (0.06)ú (0.14)ú

Margin of victory (lagged) -0.40 -0.55 -0.41 -0.45
(0.13)ú (0.11)ú (0.31) (0.19)ú

Poverty -0.04 -0.05 0.02 -0.04
(0.01)ú (0.03) (0.02) (0.08)

Proportion of close elections -0.49 -0.41 0.29 0.22
(0.12)ú (0.14)ú (0.15)† (0.10)ú

Intercept 0.78 1.11 0.30 0.32
(0.03)ú (0.05)ú (0.05)ú (0.06)ú

RMSE 0.21 0.19 0.27 0.22
F -statistic (excl. instrument) 346 369 366 50

Previous vote share Yes Yes Yes Yes
Year e�ects Yes Yes Yes Yes
State e�ects No Yes No Yes
num. obs. 336 336 146 146
ú p<0.05;

† p<0.10; Instrumental variable estimations of models in Table 2b.

2SLS estimates, standard errors clustered by state in parentheses.

IV is the (unweighted) proportion barely won/lost, based on a 5 percentage point margin.
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Table A6: 2SLS estimates: e�ect of proportion of copartisan mayors on a congres-
sional candidate’s probability of victory in Mexico, 2000-2012 (2.5pp. margin, PRI
only)

Copartisan governor Opposition governor

(1) (2) (3) (4)

(a) Second stage regression (outcome: copartisan victory)

Proportion of copartisan mayors -0.34 -0.26 0.72 0.52
(instrumented) (0.12)ú (0.13)ú (0.24)ú (0.26)ú

Margin of victory (lagged) 0.27 -0.20 0.13 0.15
(0.22) (0.27) (0.48) (0.52)

Poverty 0.10 0.17 0.13 0.06
(0.03)ú (0.04)ú (0.03)ú (0.05)

Proportion of close elections -0.09 0.06 0.27 0.29
(0.20) (0.19) (0.14)ú (0.15)†

Intercept 0.92 0.72 0.06 0.11
(0.10)ú (0.17)ú (0.09) (0.13)

RMSE 0.39 0.37 0.35 0.33

(b) First stage regression (outcome: proportion of copartisan mayors)

Proportion barely won/lost 1.05 1.03 1.15 1.06
(0.05)ú (0.06)ú (0.07)ú (0.17)ú

Margin of victory (lagged) -0.32 -0.43 -0.38 -0.68
(0.18)† (0.22)† (0.32) (0.22)ú

Poverty -0.05 -0.05 0.01 -0.05
(0.01)ú (0.03)† (0.03) (0.08)

Proportion of close elections -0.42 -0.38 0.24 0.11
(0.11)ú (0.13)ú (0.17) (0.10)

Intercept 0.76 1.16 0.33 0.43
(0.02)ú (0.05)ú (0.05)ú (0.05)ú

RMSE 0.22 0.21 0.29 0.24
F -statistic (excl. instrument) 380 276 268 37

Previous vote share Yes Yes Yes Yes
Year e�ects Yes Yes Yes Yes
State e�ects No Yes No Yes
num. obs. 336 336 146 146
ú p<0.05;

† p<0.10; Instrumental variable estimations of models in Table 2b.

2SLS estimates, standard errors clustered by state in parentheses.

IV is the (populatin-weighted) proportion barely won/lost, based on a 2.5 percentage point margin.
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C Robustness

Table A7: Probit estimates: proportion of copartisan mayors on a congressional
candidate’s probability of victory in Mexico, 2000-2012

Copartisan governor Opposition governor

(1) (2) (3) (4)

(a) Full Sample

Proportion of copartisan mayors 0.81 0.50 0.89 1.03
(0.31)ú (0.32) (0.41)ú (0.44)ú

Margin of victory (lagged) 0.36 -0.85 1.92 2.16
(0.70) (1.08) (0.94)ú (0.82)ú

Poverty 0.33 0.68 -0.08 -0.38
(0.13)ú (0.22)ú (0.12) (0.10)ú

Intercept 0.12 0.57 -0.78 -0.89
(0.19) (0.25)ú (0.18)ú (0.19)ú

Null deviance 531.8 531.8 552.1 552.1
Residual deviance 424.3 357.3 424.5 378.7
AIC 448.3 417.3 448.5 438.7
num. obs. 453 453 461 461

(b) PRI-only Sample

Proportion of copartisan mayors 0.04 0.01 2.82 2.99
(0.31) (0.32) (0.41)ú (0.44)ú

Margin of victory (lagged) 1.59 -0.56 2.57 6.08
(0.70)ú (1.08) (0.94)ú (0.82)ú

Poverty 0.52 0.96 0.69 0.37
(0.13)ú (0.22)ú (0.12)ú (0.10)ú

Intercept 0.57 0.22 -2.62 -3.26
(0.19)ú (0.25) (0.18)ú (0.19)ú

Null deviance 377.9 377.9 200.2 200.2
Residual deviance 268.9 228.7 86.0 67.5
AIC 292.9 284.7 110.0 111.5
num. obs. 336 336 146 146

Previous vote share Yes Yes Yes Yes
Year e�ects Yes Yes Yes Yes
State e�ects No Yes No Yes
ú p<0.05;

† p<0.10; Probit replications of models in Table 2.

ML estimates, standard errors clustered by state in parentheses.
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Table A8: OLS estimates: The outcome is the congressional candidate’s vote share.

Copartisan governor Opposition governor

(1) (2) (3) (4)

(a) Full Sample

Proportion of copartisan mayors 0.03 0.02 0.01 0.03
(0.02) (0.02) (0.02) (0.02)

Margin of victory (lagged) -0.14 -0.13 -0.07 -0.00
(0.05)ú (0.05)ú (0.06) (0.06)

Poverty 0.02 0.05 0.01 -0.01
(0.01)ú (0.01)ú (0.01) (0.01)

Intercept 0.40 0.41 0.32 0.33
(0.02)ú (0.02)ú (0.01)ú (0.01)ú

RMSE 0.08 0.07 0.08 0.08
num. obs. 453 453 461 461

(b) PRI-only Sample

Proportion of copartisan mayors -0.02 -0.01 0.03 -0.00
(0.02) (0.02) (0.02) (0.01)

Margin of victory (lagged) 0.03 -0.02 -0.18 -0.08
(0.04) (0.03) (0.07)ú (0.06)

Poverty 0.02 0.05 0.05 0.03
(0.01)ú (0.01)ú (0.01)ú (0.01)ú

Intercept 0.44 0.41 0.33 0.37
(0.02)ú (0.03)ú (0.01)ú (0.01)ú

RMSE 0.07 0.06 0.07 0.06
num. obs. 336 336 146 146

Previous vote share Yes Yes Yes Yes
Year e�ects Yes Yes Yes Yes
State e�ects No Yes No Yes
ú p<0.05. Specifications replicate the models in Table 2, but employing vote share as the outcome.

OLS estimates (standard errors clustered by state in parentheses).
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Table A9: OLS estimates: The outcome is the congressional candidate’s margin of
victory.

Copartisan governor Opposition governor

(1) (2) (3) (4)

(a) Full Sample

Proportion of copartisan mayors 0.09 0.05 0.08 0.06
(0.03)ú (0.02)ú (0.04)ú (0.03)†

Margin of victory (lagged) 0.05 -0.04 0.11 0.04
(0.06) (0.09) (0.09) (0.09)

Poverty 0.03 0.07 -0.01 -0.04
(0.01)ú (0.02)ú (0.02) (0.02)ú

Intercept 0.01 0.05 -0.10 -0.10
(0.02) (0.02)ú (0.02)ú (0.02)ú

RMSE 0.14 0.12 0.14 0.13
num. obs. 453 453 461 461

(b) PRI-only Sample

Proportion of copartisan mayors 0.01 0.00 0.12 0.03
(0.03) (0.02) (0.04)ú (0.04)

Margin of victory (lagged) 0.29 0.13 -0.08 -0.09
(0.05)ú (0.07)† (0.12) (0.15)

Poverty 0.03 0.07 0.06 0.01
(0.01)ú (0.02)ú (0.01)ú (0.01)

Intercept 0.05 0.08 -0.09 -0.06
(0.02)ú (0.05)† (0.02)ú (0.02)ú

RMSE 0.12 0.11 0.12 0.11
num. obs. 336 336 146 146

Previous vote share Yes Yes Yes Yes
Year e�ects Yes Yes Yes Yes
State e�ects No Yes No Yes
ú p<0.05. Specifications replicate the models in Table 2, but employing margin of victory as the outcome.

OLS estimates (standard errors clustered by state in parentheses).
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Table A10: OLS estimates: controlling for the e�ective number of municipalities

Copartisan governor Opposition governor

(1) (2) (3) (4)

(a) Full Sample

Proportion of copartisan mayors 0.25 0.17 0.28 0.29
(0.10)ú (0.09)† (0.13)ú (0.13)ú

E�ective number of municipalities 0.01 -0.00 -0.01 -0.00
(0.00)ú (0.01) (0.00)ú (0.00)

Margin of victory (lagged) 0.03 -0.25 0.54 0.43
(0.19) (0.26) (0.23)ú (0.20)ú

Poverty 0.06 0.17 0.01 -0.09
(0.03)ú (0.04)ú (0.03) (0.03)ú

Intercept 0.49 0.65 0.29 0.24
(0.07)ú (0.07)ú (0.06)ú (0.05)ú

RMSE 0.40 0.38 0.39 0.38
num. obs. 453 453 461 461

(b) PRI-only Sample

Proportion of copartisan mayors 0.03 0.05 0.52 0.42
(0.08) (0.08) (0.10)ú (0.13)ú

E�ective number of municipalities 0.01 0.01 0.01 0.00
(0.01) (0.00) (0.01) (0.01)

Margin of victory (lagged) 0.29 -0.13 -0.04 0.10
(0.18) (0.23) (0.41) (0.53)

Poverty 0.10 0.17 0.11 0.04
(0.03)ú (0.04)ú (0.05)ú (0.07)

Intercept 0.62 0.34 0.12 0.14
(0.05)ú (0.11)ú (0.07) (0.08)†

RMSE 0.37 0.36 0.34 0.33
num. obs. 336 336 146 146

Previous vote share Yes Yes Yes Yes
Year e�ects Yes Yes Yes Yes
State e�ects No Yes No Yes
ú p<0.05. Specifications replicate the models in Table 2.

OLS estimates (standard errors clustered by state in parentheses).
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Table A11: RD estimates of municipal incumbency on the municipal-level perfor-
mance of Mexican congressional candidates, 2000-2012

LATE SE bwd. N≠ N+

Local linear regression (outcome: copartisan victory)
Copartisan governor -0.09 0.03ú 0.21 1355 1649
Non-copartisan governor -0.11 0.05ú 0.11 996 742

Local linear regression (outcome: turnout)
Copartisan governor -0.01 0.01 0.17 1225 1472
Non-copartisan governor 0.01 0.01 0.15 1322 900
ú p<0.05. The outcome variables correspond to federal elections held at t+1,

but are measured at the level of the municipality. The running variable is the

margin of victory in the municipal election held at t. Bias-corrected estimates are

based on a local linear regression fitted separately at both sides of the threshold

and employing a triangular kernel. The bandwidth is calculated according to

the automatic selection procedure proposed by Calonico, Cattaneo and Titiunik

(2014).

29


	Related literature
	A theory of local mobilization in multi-level parties
	Estimating the electoral impact of copartisan mayors and governors
	Conclusion
	Proofs and derivations
	A potential identification strategy
	Robustness

